Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel

Corrosion Science - Tập 164 - Trang 108345 - 2020
Shiqi Zhang1,2, Jifang Wan3, Qiyue Zhao1, Jing Liu4, Feng Huang4, Yunhua Huang1, Xiaogang Li1
1Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3Research Institute of Petroleum Exploration and Development, Beijing 100083, China
4The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China

Tài liệu tham khảo

Li, 2017, Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel, Corros. Sci., 128, 198, 10.1016/j.corsci.2017.09.018 Li, 2010, Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test, Corros. Sci., 52, 1660, 10.1016/j.corsci.2010.02.005 Zhu, 2014, Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel, Int. J. Hydrog. Energy, 39, 13031, 10.1016/j.ijhydene.2014.06.079 Venezuela, 2018, Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions, Corros. Sci., 135, 120, 10.1016/j.corsci.2018.02.037 Figueroa, 2010, Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels, Corros. Sci., 52, 1593, 10.1016/j.corsci.2010.01.001 Wang, 2013, Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2, Corros. Sci., 77, 273, 10.1016/j.corsci.2013.08.013 Louthan, 2008, Hydrogen embrittlement of metals: a primer for the failure analyst, J. Fail, Anal. and Preven., 8, 289, 10.1007/s11668-008-9133-x Robertson, 2015, Hydrogen embrittlement understood, Metall. Mater. Trans. A, 26, 2323, 10.1007/s11661-015-2836-1 Cho, 2018, Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel, Mater. Sci. Eng. A, 734, 416, 10.1016/j.msea.2018.08.003 Hardie, 2006, Hydrogen embrittlement of high strength pipeline steels, Corros. Sci., 48, 4378, 10.1016/j.corsci.2006.02.011 Liu, 2017, Hydrogen influence on some advanced high-strength steels, Corros. Sci., 125, 114, 10.1016/j.corsci.2017.06.012 Zapffe, 1941, Hydrogen embrittlement, internal stress and defects in steel, Trans. AIME, 145, 225 Troiano, 1960, The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans. ASM, 52, 54 Oriani, 1972, A mechanistic theory of hydrogen embrittlement of steels, Ber. Bunsenges. Phys. Chem., 848 Nagumo, 2004, Hydrogen related failure of steels – a new aspect, Mater. Sci. Technol., 20, 940, 10.1179/026708304225019687 Birnbaum, 1994, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176, 191, 10.1016/0921-5093(94)90975-X Robertson, 2001, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech., 68, 671, 10.1016/S0013-7944(01)00011-X Lynch, 1988, Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36, 2639, 10.1016/0001-6160(88)90113-7 Novak, 2010, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58, 206, 10.1016/j.jmps.2009.10.005 Li, 2018, Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel, Int. J. Hydrog. Energy, 43, 17898, 10.1016/j.ijhydene.2018.07.158 Djukic, 2015, Hydrogen damage of steels: a case study and hydrogen embrittlement model, Eng. Fail. Anal., 58, 485, 10.1016/j.engfailanal.2015.05.017 Garet, 1998, Hydrogen trapping on non metallic inclusions in cr-mo low alloy steels, Corros. Sci., 40, 1073, 10.1016/S0010-938X(98)00008-0 Michler, 2009, Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel, Int. J. Hydrogen Energy, 34, 3201, 10.1016/j.ijhydene.2009.02.015 Kwon, 2018, Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates, Corros. Sci., 142, 213, 10.1016/j.corsci.2018.07.028 Szost, 2013, Developing bearing steels combining hydrogen resistance and improved hardness, Mater. Des., 43, 499, 10.1016/j.matdes.2012.07.030 Michler, 2010, Hydrogen environment embrittlement of an ODS RAF steel–Role of irreversible hydrogen trap sites, Int. J. Hydrogen Energy, 35, 9746, 10.1016/j.ijhydene.2010.06.071 Zhao, 2014, Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels, Corros. Sci., 82, 380, 10.1016/j.corsci.2014.01.042 Noh, 2017, The effect of carbon on hydrogen embrittlement in stable Cr-Ni-Mn-N austenitic stainless steels, Corros. Sci., 124, 63, 10.1016/j.corsci.2017.05.004 Depover, 2016, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Mater. Sci. Eng. A, 675, 299, 10.1016/j.msea.2016.08.053 Kim, 2018, Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels, J. Alloy. Comp., 735, 2067, 10.1016/j.jallcom.2017.12.004 Depover, 2016, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci., 112, 308, 10.1016/j.corsci.2016.07.013 Lee, 2016, Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel, Met. Mater. Int., 22, 364, 10.1007/s12540-016-5631-7 Cho, 2018, Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel, Mater. Sci. Eng. A, 735, 448, 10.1016/j.msea.2018.08.027 Zhang, 2015, Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels, Mater. Sci. Eng. A, 626, 136, 10.1016/j.msea.2014.12.051 Lin, 2018, Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5, Mater. Sci. Eng. A, 721, 38, 10.1016/j.msea.2018.02.021 Mohtadi-Bonab, 2017, A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel, Eng. Fail. Anal., 79, 351, 10.1016/j.engfailanal.2017.05.022 Mohtadi-Bonab, 2016, Effect of arisen dislocation density and texture components during cold rolling and annealing treatments on hydrogen induced cracking susceptibility in pipeline steel, J. Mater. Res., 31, 3390, 10.1557/jmr.2016.357 Mohtadi-Bonab, 2016, Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements, J. Mater. Eng. Perform., 25, 1781, 10.1007/s11665-016-2021-8 Wei, 2012, Hydrogen trapping phenomena in martensitic steels, Gaseous HE of materials in energy technologies, Woodhead, 493 Wei, 2006, Quantitative Analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A, 37A, 331, 10.1007/s11661-006-0004-3 Wei, 2009, Nano-precipitates design with hydrogen trapping character in high strength steels Turk, 2018, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152, 112, 10.1016/j.scriptamat.2018.04.013 Takahashi, 2018, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153, 193, 10.1016/j.actamat.2018.05.003 Takahashi, 2010, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63, 261, 10.1016/j.scriptamat.2010.03.012 Chen, 2017, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355, 1196, 10.1126/science.aal2418 Fan, 2017, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139, 188, 10.1016/j.actamat.2017.08.011 Cheng, 2013, Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography, Prog. Nat. Sci.: Mater. Int., 23, 446, 10.1016/j.pnsc.2013.06.005 Cheng, 2017, Carbides and possible hydrogen irreversible trapping sites in ultrahigh strength round steel, Micron, 103, 22, 10.1016/j.micron.2017.09.005 Cheng, 2018, Hydrogen diffusion and trapping in V-microalloyed mooring chain steels, Mater. Lett., 213, 118, 10.1016/j.matlet.2017.11.029 Wallaert, 2014, Thermal desorption spectroscopy evaluation of the hydrogen trapping capacity of NbC and NbN precipitates, Metall. Mater. Trans. A, 45, 2412, 10.1007/s11661-013-2181-1 Stopher, 2016, Modelling hydrogen migration and trapping in steels, Mater. Des., 106, 205, 10.1016/j.matdes.2016.05.051 Ungár, 1996, The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis, Appl. Phys. Lett., 69, 3173, 10.1063/1.117951 Devanathan, 1964, The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, J. Electrochem. Soc., 111, 619, 10.1149/1.2426195 Dong, 2009, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, Int. J. Hydrogen Energy, 34, 9879, 10.1016/j.ijhydene.2009.09.090 Yen, 2003, Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel, Mater. Chem. Phys., 80, 662, 10.1016/S0254-0584(03)00084-1 Gong, 2015, Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing, Acta Mater., 97, 392, 10.1016/j.actamat.2015.06.057 Gladman, 1999, Precipitation hardening in metals, Mater. Sci. Technol., 15, 30, 10.1179/026708399773002782 Kumar, 2017, Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel, Mater. Sci. Eng. A, 700, 140, 10.1016/j.msea.2017.05.086 Nagao, 2012, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater., 60, 5182, 10.1016/j.actamat.2012.06.040 Nagao, 2018, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and quasi-cleavage fracture of lath martensitic steels, J Mech Phys Solid, 112, 403, 10.1016/j.jmps.2017.12.016 Koyama, 2014, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater., 70, 174, 10.1016/j.actamat.2014.01.048 Djukic, 2014, Hydrogen embrittlement of low carbon structural steel, Procedia Mater. Sci., 3, 1167, 10.1016/j.mspro.2014.06.190 Wright, 2011, A review of strain analysis using Electron backscatter Diffraction, Microsc. Microanal., 17, 14, 10.1017/S1431927611000055 Okada, 2018, Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel, Int. J. Hydrogen Energy, 43, 11298, 10.1016/j.ijhydene.2018.05.011 Morsdorf, 2015, 3D structural and atomic-scale analysis of lath martensite: effect of the transformation sequence, Acta Mater., 95, 366, 10.1016/j.actamat.2015.05.023 Hutchinson, 2011, Microstructures and hardness of as-quenched martensites (0.1–0.5%C), Acta Mater., 59, 5845, 10.1016/j.actamat.2011.05.061 Pressouyre, 1979, A classification of hydrogen traps in steel, Metall. Trans. A, 10, 1571, 10.1007/BF02812023 Rivera, 2012, Hydrogen trapping in an API 5L X60, Corros. Sci., 54, 106, 10.1016/j.corsci.2011.09.008 Zhang, 2018, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139, 83, 10.1016/j.corsci.2018.04.041 Liu, 2013, Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures, Int. J. Hydrog. Energy, 38, 14364, 10.1016/j.ijhydene.2013.08.121 Wang, 2018, Effect of quenching temperature on sulfide stress cracking behavior of martensitic steel, Mater. Sci. Eng. A., 724, 131, 10.1016/j.msea.2018.03.063 Choo, 1982, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A, 13A, 135, 10.1007/BF02642424 Masoumi, 2016, Texture and grain boundary study in high strength Fe–18Ni–Co steel related to hydrogen embrittlement, Mater. Des., 91, 90, 10.1016/j.matdes.2015.11.093 Béreš, 2017, Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel, Int. J. Hydrogen Energy, 21, 14786, 10.1016/j.ijhydene.2017.03.209 Satoh, 1986, Effect of precipitate dispersion on recrystallization texture of niobium-added extra-low carbon cold-rolled steel sheet, Trans. Iron Steel Inst. Jpn., 26, 737, 10.2355/isijinternational1966.26.737 Masoumi, 2016, Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing, Corros. Sci., 111, 121, 10.1016/j.corsci.2016.05.003 Venegas, 2011, On the role of crystallographic texture in mitigating hydrogen-induced cracking in pipeline steels, Corros. Sci., 53, 4204, 10.1016/j.corsci.2011.08.031 Mohtadi-Bonab, 2015, Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking, Mater. Sci. Eng. A, 620, 97, 10.1016/j.msea.2014.10.009 Park, 2017, Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing, Corros. Sci., 128, 33, 10.1016/j.corsci.2017.08.032 Arafin, 2009, A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies, Corros. Sci., 51, 119, 10.1016/j.corsci.2008.10.006 Venegas, 2009, Role of microtexture in the interaction and coalescence of hydrogen-induced cracks, Corros. Sci., 51, 1140, 10.1016/j.corsci.2009.02.010 Wang, 2017, New insight into high-temperature creep deformation and fracture of T92 steel involving precipitates, dislocations and nanovoid, Mater. Charact., 127, 1, 10.1016/j.matchar.2017.01.025 Nagao, 2014, The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74, 244, 10.1016/j.actamat.2014.04.051 Li, 2019, Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel, Mater. Sci. Eng. A, 742, 712, 10.1016/j.msea.2018.09.048