Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel
Tài liệu tham khảo
Li, 2017, Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel, Corros. Sci., 128, 198, 10.1016/j.corsci.2017.09.018
Li, 2010, Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test, Corros. Sci., 52, 1660, 10.1016/j.corsci.2010.02.005
Zhu, 2014, Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel, Int. J. Hydrog. Energy, 39, 13031, 10.1016/j.ijhydene.2014.06.079
Venezuela, 2018, Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions, Corros. Sci., 135, 120, 10.1016/j.corsci.2018.02.037
Figueroa, 2010, Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels, Corros. Sci., 52, 1593, 10.1016/j.corsci.2010.01.001
Wang, 2013, Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2, Corros. Sci., 77, 273, 10.1016/j.corsci.2013.08.013
Louthan, 2008, Hydrogen embrittlement of metals: a primer for the failure analyst, J. Fail, Anal. and Preven., 8, 289, 10.1007/s11668-008-9133-x
Robertson, 2015, Hydrogen embrittlement understood, Metall. Mater. Trans. A, 26, 2323, 10.1007/s11661-015-2836-1
Cho, 2018, Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel, Mater. Sci. Eng. A, 734, 416, 10.1016/j.msea.2018.08.003
Hardie, 2006, Hydrogen embrittlement of high strength pipeline steels, Corros. Sci., 48, 4378, 10.1016/j.corsci.2006.02.011
Liu, 2017, Hydrogen influence on some advanced high-strength steels, Corros. Sci., 125, 114, 10.1016/j.corsci.2017.06.012
Zapffe, 1941, Hydrogen embrittlement, internal stress and defects in steel, Trans. AIME, 145, 225
Troiano, 1960, The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans. ASM, 52, 54
Oriani, 1972, A mechanistic theory of hydrogen embrittlement of steels, Ber. Bunsenges. Phys. Chem., 848
Nagumo, 2004, Hydrogen related failure of steels – a new aspect, Mater. Sci. Technol., 20, 940, 10.1179/026708304225019687
Birnbaum, 1994, Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176, 191, 10.1016/0921-5093(94)90975-X
Robertson, 2001, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech., 68, 671, 10.1016/S0013-7944(01)00011-X
Lynch, 1988, Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36, 2639, 10.1016/0001-6160(88)90113-7
Novak, 2010, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58, 206, 10.1016/j.jmps.2009.10.005
Li, 2018, Microstructural and crystallographic study of hydrogen-assisted cracking in high strength PSB1080 steel, Int. J. Hydrog. Energy, 43, 17898, 10.1016/j.ijhydene.2018.07.158
Djukic, 2015, Hydrogen damage of steels: a case study and hydrogen embrittlement model, Eng. Fail. Anal., 58, 485, 10.1016/j.engfailanal.2015.05.017
Garet, 1998, Hydrogen trapping on non metallic inclusions in cr-mo low alloy steels, Corros. Sci., 40, 1073, 10.1016/S0010-938X(98)00008-0
Michler, 2009, Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel, Int. J. Hydrogen Energy, 34, 3201, 10.1016/j.ijhydene.2009.02.015
Kwon, 2018, Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates, Corros. Sci., 142, 213, 10.1016/j.corsci.2018.07.028
Szost, 2013, Developing bearing steels combining hydrogen resistance and improved hardness, Mater. Des., 43, 499, 10.1016/j.matdes.2012.07.030
Michler, 2010, Hydrogen environment embrittlement of an ODS RAF steel–Role of irreversible hydrogen trap sites, Int. J. Hydrogen Energy, 35, 9746, 10.1016/j.ijhydene.2010.06.071
Zhao, 2014, Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels, Corros. Sci., 82, 380, 10.1016/j.corsci.2014.01.042
Noh, 2017, The effect of carbon on hydrogen embrittlement in stable Cr-Ni-Mn-N austenitic stainless steels, Corros. Sci., 124, 63, 10.1016/j.corsci.2017.05.004
Depover, 2016, Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Mater. Sci. Eng. A, 675, 299, 10.1016/j.msea.2016.08.053
Kim, 2018, Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels, J. Alloy. Comp., 735, 2067, 10.1016/j.jallcom.2017.12.004
Depover, 2016, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci., 112, 308, 10.1016/j.corsci.2016.07.013
Lee, 2016, Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel, Met. Mater. Int., 22, 364, 10.1007/s12540-016-5631-7
Cho, 2018, Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel, Mater. Sci. Eng. A, 735, 448, 10.1016/j.msea.2018.08.027
Zhang, 2015, Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels, Mater. Sci. Eng. A, 626, 136, 10.1016/j.msea.2014.12.051
Lin, 2018, Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5, Mater. Sci. Eng. A, 721, 38, 10.1016/j.msea.2018.02.021
Mohtadi-Bonab, 2017, A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel, Eng. Fail. Anal., 79, 351, 10.1016/j.engfailanal.2017.05.022
Mohtadi-Bonab, 2016, Effect of arisen dislocation density and texture components during cold rolling and annealing treatments on hydrogen induced cracking susceptibility in pipeline steel, J. Mater. Res., 31, 3390, 10.1557/jmr.2016.357
Mohtadi-Bonab, 2016, Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements, J. Mater. Eng. Perform., 25, 1781, 10.1007/s11665-016-2021-8
Wei, 2012, Hydrogen trapping phenomena in martensitic steels, Gaseous HE of materials in energy technologies, Woodhead, 493
Wei, 2006, Quantitative Analysis on hydrogen trapping of TiC particles in steel, Metall. Mater. Trans. A, 37A, 331, 10.1007/s11661-006-0004-3
Wei, 2009, Nano-precipitates design with hydrogen trapping character in high strength steels
Turk, 2018, Correlation between vanadium carbide size and hydrogen trapping in ferritic steel, Scripta Mater., 152, 112, 10.1016/j.scriptamat.2018.04.013
Takahashi, 2018, Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel, Acta Mater., 153, 193, 10.1016/j.actamat.2018.05.003
Takahashi, 2010, The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography, Scripta Mater., 63, 261, 10.1016/j.scriptamat.2010.03.012
Chen, 2017, Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel, Science, 355, 1196, 10.1126/science.aal2418
Fan, 2017, The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel, Acta Mater., 139, 188, 10.1016/j.actamat.2017.08.011
Cheng, 2013, Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography, Prog. Nat. Sci.: Mater. Int., 23, 446, 10.1016/j.pnsc.2013.06.005
Cheng, 2017, Carbides and possible hydrogen irreversible trapping sites in ultrahigh strength round steel, Micron, 103, 22, 10.1016/j.micron.2017.09.005
Cheng, 2018, Hydrogen diffusion and trapping in V-microalloyed mooring chain steels, Mater. Lett., 213, 118, 10.1016/j.matlet.2017.11.029
Wallaert, 2014, Thermal desorption spectroscopy evaluation of the hydrogen trapping capacity of NbC and NbN precipitates, Metall. Mater. Trans. A, 45, 2412, 10.1007/s11661-013-2181-1
Stopher, 2016, Modelling hydrogen migration and trapping in steels, Mater. Des., 106, 205, 10.1016/j.matdes.2016.05.051
Ungár, 1996, The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis, Appl. Phys. Lett., 69, 3173, 10.1063/1.117951
Devanathan, 1964, The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, J. Electrochem. Soc., 111, 619, 10.1149/1.2426195
Dong, 2009, Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking, Int. J. Hydrogen Energy, 34, 9879, 10.1016/j.ijhydene.2009.09.090
Yen, 2003, Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel, Mater. Chem. Phys., 80, 662, 10.1016/S0254-0584(03)00084-1
Gong, 2015, Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing, Acta Mater., 97, 392, 10.1016/j.actamat.2015.06.057
Gladman, 1999, Precipitation hardening in metals, Mater. Sci. Technol., 15, 30, 10.1179/026708399773002782
Kumar, 2017, Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel, Mater. Sci. Eng. A, 700, 140, 10.1016/j.msea.2017.05.086
Nagao, 2012, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater., 60, 5182, 10.1016/j.actamat.2012.06.040
Nagao, 2018, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and quasi-cleavage fracture of lath martensitic steels, J Mech Phys Solid, 112, 403, 10.1016/j.jmps.2017.12.016
Koyama, 2014, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater., 70, 174, 10.1016/j.actamat.2014.01.048
Djukic, 2014, Hydrogen embrittlement of low carbon structural steel, Procedia Mater. Sci., 3, 1167, 10.1016/j.mspro.2014.06.190
Wright, 2011, A review of strain analysis using Electron backscatter Diffraction, Microsc. Microanal., 17, 14, 10.1017/S1431927611000055
Okada, 2018, Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel, Int. J. Hydrogen Energy, 43, 11298, 10.1016/j.ijhydene.2018.05.011
Morsdorf, 2015, 3D structural and atomic-scale analysis of lath martensite: effect of the transformation sequence, Acta Mater., 95, 366, 10.1016/j.actamat.2015.05.023
Hutchinson, 2011, Microstructures and hardness of as-quenched martensites (0.1–0.5%C), Acta Mater., 59, 5845, 10.1016/j.actamat.2011.05.061
Pressouyre, 1979, A classification of hydrogen traps in steel, Metall. Trans. A, 10, 1571, 10.1007/BF02812023
Rivera, 2012, Hydrogen trapping in an API 5L X60, Corros. Sci., 54, 106, 10.1016/j.corsci.2011.09.008
Zhang, 2018, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139, 83, 10.1016/j.corsci.2018.04.041
Liu, 2013, Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures, Int. J. Hydrog. Energy, 38, 14364, 10.1016/j.ijhydene.2013.08.121
Wang, 2018, Effect of quenching temperature on sulfide stress cracking behavior of martensitic steel, Mater. Sci. Eng. A., 724, 131, 10.1016/j.msea.2018.03.063
Choo, 1982, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A, 13A, 135, 10.1007/BF02642424
Masoumi, 2016, Texture and grain boundary study in high strength Fe–18Ni–Co steel related to hydrogen embrittlement, Mater. Des., 91, 90, 10.1016/j.matdes.2015.11.093
Béreš, 2017, Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel, Int. J. Hydrogen Energy, 21, 14786, 10.1016/j.ijhydene.2017.03.209
Satoh, 1986, Effect of precipitate dispersion on recrystallization texture of niobium-added extra-low carbon cold-rolled steel sheet, Trans. Iron Steel Inst. Jpn., 26, 737, 10.2355/isijinternational1966.26.737
Masoumi, 2016, Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing, Corros. Sci., 111, 121, 10.1016/j.corsci.2016.05.003
Venegas, 2011, On the role of crystallographic texture in mitigating hydrogen-induced cracking in pipeline steels, Corros. Sci., 53, 4204, 10.1016/j.corsci.2011.08.031
Mohtadi-Bonab, 2015, Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking, Mater. Sci. Eng. A, 620, 97, 10.1016/j.msea.2014.10.009
Park, 2017, Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing, Corros. Sci., 128, 33, 10.1016/j.corsci.2017.08.032
Arafin, 2009, A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies, Corros. Sci., 51, 119, 10.1016/j.corsci.2008.10.006
Venegas, 2009, Role of microtexture in the interaction and coalescence of hydrogen-induced cracks, Corros. Sci., 51, 1140, 10.1016/j.corsci.2009.02.010
Wang, 2017, New insight into high-temperature creep deformation and fracture of T92 steel involving precipitates, dislocations and nanovoid, Mater. Charact., 127, 1, 10.1016/j.matchar.2017.01.025
Nagao, 2014, The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74, 244, 10.1016/j.actamat.2014.04.051
Li, 2019, Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel, Mater. Sci. Eng. A, 742, 712, 10.1016/j.msea.2018.09.048