Dual multiwavelet frames with high balancing order and compact fast frame transform

Applied and Computational Harmonic Analysis - Tập 26 - Trang 14-42 - 2009
Bin Han1
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Tài liệu tham khảo

Chui, 2002, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal., 13, 224, 10.1016/S1063-5203(02)00510-9 Chui, 2005, Nonstationary tight wavelet frames. II. Unbounded interval, Appl. Comput. Harmon. Anal., 18, 25, 10.1016/j.acha.2004.09.004 Chui, 2003, Compactly supported tight affine frames with integer dilations and maximum vanishing moments, Adv. Comput. Math., 18, 159, 10.1023/A:1021318804341 Chui, 2000, Balanced multi-wavelets in Rs, Math. Comp., 74, 1323, 10.1090/S0025-5718-04-01681-3 Daubechies, 1990, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961, 10.1109/18.57199 Daubechies, 1992, Ten Lectures on Wavelets, 10.1137/1.9781611970104 Daubechies, 2004, Pairs of dual wavelet frames from any two refinable functions, Constr. Approx., 20, 325, 10.1007/s00365-004-0567-4 Daubechies, 2003, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1, 10.1016/S1063-5203(02)00511-0 Han, 1997, On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 4, 380, 10.1006/acha.1997.0217 Han, 2001, Approximation properties and construction of, Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory, 110, 18, 10.1006/jath.2000.3545 Han, 2003, Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math., 155, 43, 10.1016/S0377-0427(02)00891-9 Han, 2003, Vector cascade transforms and refinable function vectors in Sobolev spaces, J. Approx. Theory, 124, 44, 10.1016/S0021-9045(03)00120-5 Han, 2008, Construction of wavelets and framelets by the projection method, Int. J. Appl. Math. Appl., 1, 1 Han, 2003, Multiwavelet frames from refinable function vectors, Adv. Comput. Math., 18, 211, 10.1023/A:1021360312348 Han, 2004, Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments, Proc. Amer. Math. Soc., 132, 77, 10.1090/S0002-9939-03-07205-8 Han, 2005, Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. Comput. Harmon. Anal., 18, 67, 10.1016/j.acha.2004.09.001 Jetter, 1995, Order of linear approximation from shift-invariant spaces, Constr. Approx., 11, 423, 10.1007/BF01208430 K. Jetter, D.X. Zhou, Approximation order of linear operators and finitely generated shift-invariant spaces, preprint, 1998 Lawton, 1995, Complete characterization of refinable splines, Adv. Comput. Math., 3, 137, 10.1007/BF03028364 Lebrub, 1998, Balanced multiwavelets: Theory and design, IEEE Trans. Signal Process., 46, 1119, 10.1109/78.668561 Ron, 1997, Affine systems in L2(Rd): The analysis of the analysis operator, J. Funct. Anal., 148, 408, 10.1006/jfan.1996.3079 Ron, 1997, Affine systems in L2(Rd). II. Dual systems, J. Fourier Anal. Appl., 3, 617, 10.1007/BF02648888 Selesnick, 2000, Balanced multiwavelet bases based on symmetric FIR filters, IEEE Trans. Signal Process., 48, 184, 10.1109/78.815488 Selesnick, 2000, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal., 10, 163, 10.1006/acha.2000.0332