Dual color chromogenic in situ hybridization for determination of HER2 status in breast cancer: a large comparative study to current state of the art fluorescence in situ hybridization
Tóm tắt
Chromogenic in situ hybridization (CISH) is fast becoming a well established technique for easy and sensitive determination of HER2 gene status in breast cancer. However, for the chromogenic method to achieve status as a safe and reliable technique, the method needs to be validated against already known and validated FISH techniques. Here it is reported from a comparative study where HER2 gene status obtained by HER2 CISH pharmDx™ Kit was compared to HER2 gene status obtained by the FDA approved HER2 FISH pharmDx™ Kit and the PathVysion HER-2 DNA probe Kit. The study included 365 formalin fixed and paraffin-embedded invasive breast cancer tissue specimens collected consecutively at a US reference laboratory. The data obtained revealed an overall HER2 status concordance of approximately 98% for comparisons of HER2 CISH pharmDx™ Kit to both HER2 FISH pharmDx™ Kit and PathVysion HER-2 DNA Probe Kit. The concordance between results obtained using the recently FDA approved HER2 CISH pharmDx™ Kit with previously FDA approved FISH techniques for HER2 gene status determination indicate that the HER2 CISH pharmDx™ Kit is a reliable chromogenic alternative to fluorescence-based methods.
Tài liệu tham khảo
Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN: The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009, 14 (4): 320-368. 10.1634/theoncologist.2008-0230.
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235 (4785): 177-182. 10.1126/science.3798106.
Ross JS, Fletcher JA: The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells. 1998, 16 (6): 413-428. 10.1002/stem.160413.
Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, Waldman FM, Pinkel D, Gray JW: ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA. 1992, 89 (12): 5321-5325. 10.1073/pnas.89.12.5321.
Tanner M, Gancberg D, Di LA, Larsimont D, Rouas G, Piccart MJ, Isola J: Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000, 157 (5): 1467-1472. 10.1016/S0002-9440(10)64785-2.
Bhargava R, Lal P, Chen B: Chromogenic in situ hybridization for the detection of HER-2/neu gene amplification in breast cancer with an emphasis on tumors with borderline and low-level amplification: does it measure up to fluorescence in situ hybridization?. Am J Clin Pathol. 2005, 123 (2): 237-243. 10.1309/C4PEBGB9LN830TVL.
Arnould L, Denoux Y, MacGrogan G, Penault-Llorca F, Fiche M, Treilleux I, Mathieu MC, Vincent-Salomon A, Vilain MO, Couturier J: Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 2003, 88 (10): 1587-1591. 10.1038/sj.bjc.6600943.
Lambros MB, Natrajan R, Reis-Filho JS: Chromogenic and fluorescent in situ hybridization in breast cancer. Hum Pathol. 2007, 38 (8): 1105-1122. 10.1016/j.humpath.2007.04.011.
Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN: Targeted therapy in breast cancer: the HER-2/neu gene and protein. Molecular Cell Proteomics. 2004, 3 (4): 379-398. 10.1074/mcp.R400001-MCP200.
Arena V, Pennacchia I, Vecchio FM, Carbone A: "CISH the FISH" for HER2: our laboratory experience. Am J Clin Pathol. 2010, 134 (2): 347-348. 10.1309/AJCPVH1IGEG8CPXB.
Brown LD, Cai T, DasGupta A: Interval Estimation for a Binomial Proportion. Stat Sci. 2001, 16 (2): 101-133.
Dendukuri N, Khetani K, McIsaac M, Brophy J: Testing for HER2-positive breast cancer: a systematic review and cost-effectiveness analysis. CMAJ. 2007, 176 (10): 1429-1434. 10.1503/cmaj.061011.
Cohen J: A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas. 1960, 20 (1): 37-46. 10.1177/001316446002000104.
Dwyer AJ: Matchmaking and McNemar in the comparison of diagnostic modalities. Radiology. 1991, 178 (2): 328-330.
García-Caballero T, Grabau D, Green AR, Gregory J, Schad A, Kohlwes E, Ellis IO, Watts S, Mollerup J: Determination of HER2 amplification in primary breast cancer using dual-color chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicenter study involving 168 specimens. Histopathology. 2010, 56: 472-480. 10.1111/j.1365-2559.2010.03503.x.
Pedersen M, Rasmussen BB: The correlation between dual-color chromogenic in situ hybridization and fluorescence in situ hybridization in assessing HER2 gene amplification in breast cancer. Diagn Mol Pathol. 2009, 18 (2): 96-102. 10.1097/PDM.0b013e31817f5227.
Hoff K, Jorgensen JT, Muller S, Rongaard E, Rasmussen O, Schonau A: Visualization of FISH Probes by dual-color chromogenic in situ hybridization. Am J Clin Pathol. 2009, 133 (2): 205-211.
Kato N, Itoh H, Serizawa A, Hatanaka Y, Umemura S, Osamura RY: Evaluation of HER2 gene amplification in invasive breast cancer using a dual-color chromogenic in situ hybridization (dual CISH). Pathol Int. 2010, 60 (7): 510-515. 10.1111/j.1440-1827.2010.02553.x.
Dandachi N, Dietze O, Hauser-Kronberger C: Chromogenic in situ hybridization: a novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab Invest. 2002, 82 (8): 1007-1014.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6890/12/3/prepub