Dual‐Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation

Advanced Functional Materials - Tập 31 Số 34 - 2021
Xuan Wu1, Yida Wang1, Zhenhua Wu1, Jingyuan Zhao1, Yi Lu2, Xiaofei Yang2, Haolan Xu1
1Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
2College of Science, Nanjing Forestry University, Nanjing, 210037, China

Tóm tắt

AbstractInterfacial solar steam generation offers a promising and cost‐effective way for saline water desalination. However, salt accumulation and deposition on photothermal materials during saline and brine evaporation is detrimental to the stability and sustainability of solar evaporation. Although several antisalt strategies are developed, it is difficult to simultaneously achieve high evaporation rates (>2.0 kg m−2 h−1) and energy efficiencies. In this study, a self‐rotating photothermal evaporator with dual evaporation zones (i.e., high‐temperature and low‐temperature evaporation zones) is developed. This photothermal evaporator is sensitive to weight imbalance (<15 mg) thus is able to quickly respond to salt accumulation by rotation to refresh the evaporation surface, while the dual evaporation zones optimize the energy nexus during solar evaporation, simultaneously realizing excellent salt‐resistant performance and high evaporation rate (2.6 kg m−2 h−1), which can significantly contribute to the real‐world application of solar steam generation technology.

Từ khóa


Tài liệu tham khảo

10.1126/sciadv.1500323

10.1038/ngeo2646

10.1016/j.watres.2015.02.032

10.1016/j.desal.2012.10.015

10.1039/C8EE01146J

10.1016/j.nanoen.2018.12.046

10.1002/adma.201805159

10.1002/adma.201501832

10.1038/ncomms5449

10.1038/s41560-018-0260-7

10.1002/aenm.201900310

10.1016/j.mtener.2019.02.001

10.1002/adsu.201700046

10.1002/adfm.201903255

10.1016/j.nanoen.2018.02.018

10.1002/adfm.201707134

10.1002/aenm.201701028

10.1016/j.joule.2017.09.011

10.1002/adma.201701756

10.1002/adma.201606762

10.1002/adma.201604031

10.1016/j.nanoen.2019.03.039

10.1126/sciadv.aaw7013

10.1038/nenergy.2016.126

10.1038/s41565-018-0097-z

10.1038/s41467-018-07494-2

10.1016/j.nanoen.2020.105477

10.1039/D0TA03799K

10.1039/C8TA03280G

10.1002/aenm.201900250

10.1002/advs.201903478

10.1038/s41578-020-0182-4

10.1039/D0TA08539A

10.1039/D0TA09773J

10.1002/adfm.202008681

10.1016/j.nanoen.2020.104650

10.1016/j.nanoen.2020.104886

10.1016/j.nanoen.2020.104857

10.1021/acsami.7b01992

10.1002/anie.201911457

10.1002/adma.201706805

10.1002/anie.201810345

10.1002/aenm.201802158

10.1002/adfm.201704505

10.1002/adfm.202005513

10.1002/adfm.202006294

10.1126/sciadv.1501227

10.1002/gch2.201600003

10.1016/j.nanoen.2021.105872

10.1002/adfm.202011114

10.1021/acs.est.8b03300

10.1039/C9EE00945K

10.1002/adfm.202007855

10.1016/j.joule.2018.12.023

10.1039/C7TA03977H

10.1002/adma.201900498

10.1039/C8TA05569F

10.1021/acsami.0c17177

10.1039/C8MH00386F

10.1002/aenm.201702884

10.1039/C8EE00220G

10.1039/C9EE00692C

10.1039/D0TA04677A

10.1002/asia.201300078

10.1016/j.matt.2019.05.002

10.1021/acsami.0c01707

10.1016/j.nanoen.2020.105269

10.1002/advs.202002501

10.1016/j.joule.2018.03.013

10.1016/j.joule.2018.04.004

10.1002/advs.201800222

10.1016/j.scib.2020.04.036

10.1016/j.scib.2019.08.022

10.1007/s42864-020-00062-6

10.1016/S0011-9164(02)00943-8

10.1093/nsr/nwab065