Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vật Liệu Được Tạo Ra Từ Ảnh Hưởng Của Plasma Arc Hai Dây SS 316L-Inconel 625: Tiến Hóa Cấu Trúc Vi Và Tính Chất Cơ Học
Tóm tắt
Vật liệu có độ biến thiên chức năng (FGM) là phản ứng thích hợp cho các ứng dụng hiệu suất cao và đa chức năng. Trong nghiên cứu này, hàn hồ quang plasma hai dây có thể được sử dụng để chế tạo FGM SS 316L-Inconel 625 với độ biến thiên thành phần 50 wt.% bằng cách điều chỉnh tỷ lệ thể tích của dây hàn cung cấp cho bể nóng chảy. Sự tiến hóa pha, cấu trúc vi, thành phần, độ cứng vi và tính chất kéo của các vùng thành phần khác nhau dọc theo hướng xây dựng đã được phân tích. Kết quả cho thấy có sự liên kết tốt ở vùng giao diện kim loại hỗn hợp và cấu trúc vi không có khuyết tật. Cấu trúc vi dọc theo hướng lắng đọng chủ yếu là cấu trúc cột và cấu trúc tinh thể dendritic có hình dạng đều, và hướng phát triển hạt chủ yếu theo hướng lắng đọng. Sự tồn tại của các pha Laves được chứng minh bằng bản đồ EDS và phát hiện điểm. Do việc làm nóng lại, có một sai lệch giữa phân bố thành phần thực tế và gradient rời rạc theo thiết kế. Giá trị độ cứng vi giảm trước, đạt giá trị tối thiểu ở giao diện kim loại hỗn hợp của SS 316L 100–50 wt.%, và sau đó tăng dần (157 HV-208 HV). Độ bền kéo cực đại, độ bền có ứng suất và độ giãn dài lần lượt là 554,12 ± 7,44 MPa, 340,79 ± 4,13 MPa và 26,65 ± 0,27%. Từ nghiên cứu tính khả thi, hàn hồ quang plasma hai dây cung cấp một quy trình sản xuất bổ sung mới cho các FGM.
Từ khóa
#Vật liệu biến thiên chức năng #Hàn hồ quang plasma hai dây #Cấu trúc vi #Tính chất cơ học #SS 316L #Inconel 625Tài liệu tham khảo
J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, M. de Brito Ferraz, L. Piçarra, Z. Zeng, N. Schell, N. Zhou and, H. Seop Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Sainless Steel, Mater. Des., 2022 https://doi.org/10.1016/j.matdes.2022.110717
A.M.S. Costa, J.P. Oliveira, V.F. Pereira, C.A. Nunes, A.J. Ramirez and, A.P. Tschiptschin, Ni-Based Mar-M247 Superalloy as a Friction Stir Processing Tool, J. Mater. Process Tech., 2018, 262, p 605–614. https://doi.org/10.1016/j.jmatprotec.2018.07.034
L. Yan, Y.T. Chen and, F. Liou, Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition, Addit Manuf, 2020, 31, p 100901. https://doi.org/10.1016/j.addma.2019.100901
J. Coleman, A. Plotkowski, B. Stump, N. Raghavan, A.S. Sabau, M.J.M. Krane, J. Heigel, R.E. Ricker, L. Levine and, S.S. Babu, Sensitivity of Thermal Predictions to Uncertain Surface Tension Data in Laser Additive Manufacturing, J. Heat Trans., 2020 https://doi.org/10.1115/1.4047916
G. Xu, R. Wu, K. Luo and, J. Lu, Effects of Heat Treatment on Hot Corrosion Behavior of Directed Energy Deposited In718/316L Functionally Graded Material, Corros. Sci., 2022, 197, p 110068.
U. Savitha, G. Jagan Reddy, A. Venkataramana, A. Sambasiva Rao, A.A. Gokhale and, M. Sundararaman, Chemical Analysis, Structure and Mechanical Properties of Discrete and Compositionally Graded SS316–IN625 Dual Materials, Mater. Sci. Eng.: A, 2015, 647, p 344–352. https://doi.org/10.1016/j.msea.2015.09.001
R. Ghanavati and H. Naffakh-Moosavy, Additive Manufacturing of Functionally Graded Metallic Materials: A Review of Experimental and Numerical Studies, J. Mater. Res. Technol., 2021, 13, p 1628–1664. https://doi.org/10.1016/j.jmrt.2021.05.022
A. Strojny-Nedza, K. Pietrzak and, W. Weglewski, The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM), J. Mater. Eng. Perform., 2016, 25(8), p 3173–3184. https://doi.org/10.1007/s11665-016-2204-3
M. K, FGM Activities in Japan, Compos. Part B: Eng., 1997, 28(1–2), p 1–4. https://doi.org/10.1016/S1359-8368(96)00016-9
B.E. Carroll, R.A. Otis, J.P. Borgonia, J.O. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.K. Liu and, A.M. Beese, Functionally Graded Material of 304L Stainless Steel and inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling, Acta Mater., 2016, 108, p 46–54. https://doi.org/10.1016/j.actamat.2016.02.019
K. Shah, I. ulHaq, A. Khan, S.A. Shah, M. Khan and, A.J. Pinkerton, Parametric Study of Development of Inconel-Steel Functionally Graded Materials by Laser Direct Metal Deposition, Mater. Des., 2014, 54, p 531–538. https://doi.org/10.1016/j.matdes.2013.08.079
S. Mohan Kumar, A. Rajesh Kannan, N. Pravin Kumar, R. Pramod, N. Siva Shanmugam, A.S. Vishnu and, S.G. Channabasavanna, Microstructural Features and Mechanical Integrity of Wire Arc Additive Manufactured SS321/Inconel 625 Functionally Gradient Material, J. Mater. Eng. Perform., 2021, 30(8), p 5692–5703. https://doi.org/10.1007/s11665-021-05617-3
G.H. Loh, E.J. Pei, D. Harrison and, M.D. Monzon, An Overview of Functionally Graded Additive Manufacturing, Addit Manuf, 2018, 23, p 34–44. https://doi.org/10.1016/j.addma.2018.06.023
D. Raabe, C.C. Tasan and, E.A. Olivetti, Strategies for Improving the Sustainability of Structural Metals, Nature, 2019, 575, p 64–74.
W. Zixian, G. Shi, Y. Yang, X. Wen, C. Guo, and A. Zhang, Micro Metal Additive Manufactured Low-Loss Slotted Rectangular Waveguides Operating at 220-500 GHz, Front. Phys., 2021 https://doi.org/10.3389/fphy.2021.696318
A. Singh, S. Kapil, and M. Das, A Comprehensive Review of the Methods and Mechanisms for Powder Feedstock Handling in Directed Energy Deposition, Addit Manuf, 2020, 35, p 101388. https://doi.org/10.1016/j.addma.2020.101388
W. Meng, W.H. Zhang, W. Zhang, X.H. Yin, and B. Cui, Fabrication of Steel-Inconel Functionally Graded Materials by Laser Melting Deposition Integrating with Laser Synchronous Preheating, Opt. Laser Technol., 2020, 131, p 106451. https://doi.org/10.1016/j.optlastec.2020.106451
A.U. Rehman, N.K. Babu, M.K. Talari, Y.S. Usmani, and H. Al-Khalefah, Microstructure and Mechanical Property Correlation Between Rotary Friction Welded Nitinol–Nitinol Joints, Front. Mater., 2021 https://doi.org/10.3389/fmats.2021.726383
A. Reichardt, R.P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose, and P. Hosemann, Development and Characterization of Ti-6Al-4V to 304L Stainless Steel Gradient Components Fabricated with Laser Deposition Additive Manufacturing, Mater. Des., 2016, 104, p 404–413. https://doi.org/10.1016/j.matdes.2016.05.016
C. Wei, Z. Sun, Q. Chen, Z. Liu, and L. Li, Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting, J. Manuf. Sci. Eng., 2019 https://doi.org/10.1115/1.4043983
Y. Su, B. Chen, C. Tan, X. Song, and J. Feng, Influence of Composition Gradient Variation on the Microstructure and Mechanical Properties of 316 L/Inconel718 Functionally Graded Material Fabricated by Laser Additive Manufacturing, J. Mater. Process Tech., 2020, 283, p 116702. https://doi.org/10.1016/j.jmatprotec.2020.116702
E. Tenuta, A. Nycz, M. Noakes, S. Simunovic, and M.H.A. Piro, Material Properties and Mechanical Behaviour of Functionally Graded Steel Produced by Wire-Arc Additive Manufacturing, Addit. Manuf., 2021, 46, p 102175. https://doi.org/10.1016/j.addma.2021.102175
W.C. Ke, J.P. Oliveira, B.Q. Cong, S.S. Ao, Z.W. Qi, B. Peng, and Z. Zeng, Multi-Layer Deposition Mechanism in Ultra High-Frequency Pulsed Wire Arc Additive Manufacturing (WAAM) of NiTi Shape Memory Alloys, Addit. Manuf., 2022, 50, p 102513. https://doi.org/10.1016/j.addma.2021.102513
A. Ramalho, T.G. Santos, B. Bevans, Z. Smoqi, J.P. Oliveira, and P. Rao, Effect of Contaminations on the Acoustic Emissions During Wire and Arc Additive Manufacturing of 316L Stainless Steel, Addit. Manuf., 2022, 51, p 102585. https://doi.org/10.1016/j.addma.2021.102585
Q.K. Shen, X.D. Kong, X.Z. Chen, X.K. Yao, V.B. Deev, and E.S. Prusov, Powder Plasma Arc Additive Manufactured CoCrFeNi(SiC)(x) High-Entropy Alloys: Microstructure and Mechanical Properties, Mater. Lett., 2021 https://doi.org/10.1016/j.matlet.2020.128736
S. Qingkai, and K.C.Y.D.P. XiangdongXizhangXukaiVBES, Powder Plasma Arc Additive Manufactured CoCrFeNi(SiC)x High-Entropy Alloys: Microstructure and Mechanical Properties, Mater. Lett., 2021, 282, p 128736. https://doi.org/10.1016/j.matlet.2020.128736
X. Chen, J. Han, J. Wang, Y. Cai, G. Zhang, L. Lianzhong, Y. Xin, and Y. Tian, A Functionally Graded Material from TC4 to 316L Stainless Steel Fabricated by Double-Wire + Arc Additive Manufacturing, Mater. Lett., 2021, 300, p 130141. https://doi.org/10.1016/j.matlet.2021.130141
G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Ganguly, and S. Williams, Functionally Graded Structures of Refractory Metals by Wire Arc Additive Manufacturing, Sci. Technol. Weld. Jol., 2019, 24(5), p 495–503. https://doi.org/10.1080/13621718.2019.1586162
C. Shen, Z. Pan, D. Cuiuri, J. Roberts, and H. Li, Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process, Metall. Mater. Trans. B, 2015, 47(1), p 763–772. https://doi.org/10.1007/s11663-015-0509-5
J. Han, L. Lianzhong, Y. Xin, X. Chen, G. Zhang, Y. Cai, and Y. Tian, Microstructure and Mechanical Properties of a Novel Functionally Graded Material from Ti6Al4V to Inconel 625 Fabricated by Dual Wire + Arc Additive Manufacturing, J. Alloy. Compd., 2022, 903, p 163981. https://doi.org/10.1016/j.jallcom.2022.163981
T.A. Rodrigues, N. Bairrão, F.W.C. Farias, A. Shamsolhodaei, J. Shen, N. Zhou, E. Maawad, N. Schell, T.G. Santos, and J.P. Oliveira, Steel-Copper Functionally Graded Material Produced by Twin-Wire and Arc Additive Manufacturing (T-WAAM), Mater. Des., 2022, 213, p 110270. https://doi.org/10.1016/j.matdes.2021.110270
C. Shen, K.-D. Liss, M. Reid, Z. Pan, X. Hua, F. Li, G. Mou, Y. Huang, B. Dong, D. Luo, and H. Li, Effect of the Post-Production Heat Treatment on Phase Evolution in the fe3Ni–FeNi Functionally Graded Material: An in-Situ Neutron Diffraction Study, Intermetallics, 2021, 129, p 107032. https://doi.org/10.1016/j.intermet.2020.107032
T.S. Senthil, S.R. Babu, M. Puviyarasan, and V. Dhinakaran, Mechanical and Microstructural Characterization of Functionally Graded INCONEL 825-SS316L Fabricated Using Wire Arc Additive Manufacturing, J. Mater. Res. Technol., 2021, 15, p 661–669. https://doi.org/10.1016/j.jmrt.2021.08.060
J.R. Zhang, X.J. Di, X. Jiang, and C.N. Li, Effect of Synchronous Electromagnetic Stirring on Laves Phase Morphology and Mechanical Property of Inconel625-HSLA Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing, Mater. Lett., 2022, 316, p 132015. https://doi.org/10.1016/j.matlet.2022.132015
D. Zaguliaev, S. Konovalov, Y. Ivanov, and V. Gromov, Effect of Electron-Plasma Alloying on Structure and Mechanical Properties of Al-Si Alloy, Appl. Surf. Sci., 2019, 498, p 143767. https://doi.org/10.1016/j.apsusc.2019.143767
V. Hutsaylyuk, M. Student, V. Posuvailo, O. Student, V. Hvozdets’kyi, P. Maruschak, and V. Zakiev, The role of Hydrogen in the Formation of Oxide-Ceramic Layers on Aluminum Alloys During their Plasma-Electrolytic Oxidation, J. Market. Res., 2021, 14, p 1682–1696. https://doi.org/10.1016/j.jmrt.2021.07.082
W. Yangfan, C. Xizhang, and S. Chuanchu, Microstructure and Mechanical Properties of INCONEL 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coat. Technol., 2019, 374, p 116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079
T. Pinomaa, M. Lindroos, M. Walbruhl, N. Provatas, and A. Laukkanen, The Significance of Spatial Length Scales and Solute Segregation in Strengthening Rapid Solidification Microstructures of 316L Stainless Steel, Acta Mater., 2020, 184, p 1–16. https://doi.org/10.1016/j.actamat.2019.10.044
G.T. Gray, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert, and S.J. Fensin, Structure/Property (Constitutive and Spallation Response) of Additively Manufactured 316L Stainless Steel, Acta Mater., 2017, 138, p 140–149. https://doi.org/10.1016/j.actamat.2017.07.045
S.H. Kim, H. Lee, S.M. Yeon, C. Aranas, K. Choi, J. Yoon, S.W. Yang, and H. Lee, SELECTIVE Compositional Range Exclusion via Directed Energy Deposition to Produce a Defect-free INCONEL 718/SS 316L Functionally Graded Material, Addit. Manuf., 2021, 47, p 102288. https://doi.org/10.1016/j.addma.2021.102288
W. Li, X. Chen, L. Yan, J. Zhang, X. Zhang, and F. Liou, Additive Manufacturing of a New Fe-Cr-Ni Alloy with Gradually Changing Compositions with Elemental Powder Mixes and Thermodynamic Calculation, Int. J. Adv. Manuf. Tech., 2017, 95(1–4), p 1013–1023. https://doi.org/10.1007/s00170-017-1302-1
D.Y. Deng, R.L. Peng, H. Brodin, and J. Moverare, Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments, Mat. Sci. Eng. A-Struct., 2018, 713, p 294–306. https://doi.org/10.1016/j.msea.2017.12.043
D.C. Kong, C.F. Dong, S.L. Wei, X.Q. Ni, L. Zhang, R.X. Li, L. Wang, C. Man and X.G. Li, About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels, Addit. Manuf., 2021, 38, p 101804. https://doi.org/10.1016/j.addma.2020.101804
D. Wu, X. Liang, Q. Li, and L. Jiang, Laser Rapid Manufacturing of Stainless Steel 316L/Inconel718 Functionally Graded Materials: Microstructure Evolution and Mechanical Properties, Int. J. Opt., 2010, 2010, p 1–5. https://doi.org/10.1155/2010/802385
Y. Zhong, Z.Z. Zheng, J.J. Li, and C. Wang, Fabrication of 316L Nuclear Nozzles on the Main Pipeline with Large Curvature by CMT Wire Arc Additive Manufacturing and Self-Developed Slicing Algorithm, Mat. Sci. Eng. A-Struct., 2021, 820, p 141539. https://doi.org/10.1016/j.msea.2021.141539
W. Li, L. Yan, X. Chen, J. Zhang, X. Zhang, and F. Liou, Directed Energy Depositing a New Fe-Cr-Ni alloy with gradually changing Composition with Elemental Powder Mixes and PARTICLE size’ Effect in Fabrication Process, J. Mater. Process Tech., 2018, 255, p 96–104. https://doi.org/10.1016/j.jmatprotec.2017.12.010
B.R. Barbero, and E.S. Ureta, Comparative study of Different Digitization Techniques and their Accuracy, Comput. Aided Design, 2011, 43(2), p 188–206. https://doi.org/10.1016/j.cad.2010.11.005
R. Ghanavati, H. Naffakh-Moosavy, and M. Moradi, Additive Manufacturing of thin-Walled SS316L-IN718 Functionally Graded Materials by Direct Laser Metal Deposition, J. Mater. Res. Technol., 2021, 15, p 2673–2685. https://doi.org/10.1016/j.jmrt.2021.09.061
D. Verdi, M.A. Garrido, C.J. Munez, and P. Poza, Microscale Effect of High-Temperature Exposition on Laser Cladded Inconel 625-Cr3C2 Metal Matrix Composite, J. Alloys Compd., 2017, 695, p 2696–2705. https://doi.org/10.1016/j.jallcom.2016.11.185
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–71. https://doi.org/10.1038/nmat5021
H. Xiao, S.M. Li, X. Han, J. Mazumder, and L.J. Song, Laves Phase Control of Inconel 718 Alloy using Quasi-Continuous-Wave Laser Additive Manufacturing, Mater. Des., 2017, 122, p 330–339. https://doi.org/10.1016/j.matdes.2017.03.004
B. Chen, Y. Su, Z.H. Xie, C.W. Tan, and J.C. Feng, Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition, Opt. Laser Technol., 2020, 123, p 105916. https://doi.org/10.1016/j.optlastec.2019.105916
E. Chauvet, P. Kontis, E.A. Jagle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, and G. Martin, Hot Cracking Mechanism Affecting a Non-Weldable Ni-Based superalloy Produced by Selective Electron BEAM Melting, Acta Mater., 2018, 142, p 82–94. https://doi.org/10.1016/j.actamat.2017.09.047
X. Chen, J. Li, X. Cheng, B. He, H. Wang, and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577. https://doi.org/10.1016/j.msea.2017.05.024
D.R. Feenstra, A. Molotnikov, and N. Birbilis, Effect of Energy Density on the Interface Evolution of Stainless Steel 316l Deposited Upon INC 625 via Directed Energy Deposition, J. Mater. Sci., 2020, 55(27), p 13314–13328. https://doi.org/10.1007/s10853-020-04913-y
M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, and A. Piglione, The Role of Side-Branching in Microstructure Development in Laser Powder-Bed Fusion, Nat. Commun., 2020, 11(1), p 749. https://doi.org/10.1038/s41467-020-14453-3