Dual Stimuli Switching: Interconverting Cationic and Radical Polymerizations with Electricity and Light

Chem - Tập 6 - Trang 1794-1803 - 2020
Michael J. Supej1, Brian M. Peterson2, Brett P. Fors1
1Cornell University, Ithaca, NY, 14853, USA
2Cornell University, Ithaca, NY 14853, USA

Tài liệu tham khảo

Lutz, 2010, Sequence-controlled polymerizations: the next holy grail in polymer science?, Polym. Chem., 1, 55, 10.1039/b9py00329k Lutz, 2013, Sequence-controlled polymers, Science, 341, 1238149, 10.1126/science.1238149 Bates, 2012, Multiblock polymers: panacea or Pandora's box?, Science, 336, 434, 10.1126/science.1215368 Corrigan, 2019, Mediating reaction orthogonality in polymer and materials science, Angew. Chem. Int. Ed. Engl. Yağci, 1998, Externally stimulated initiator systems for cationic polymerization, Prog. Polym. Sci., 23, 1485, 10.1016/S0079-6700(98)00010-0 Naumann, 2014, Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis, Catal. Sci. Technol., 4, 2466, 10.1039/C4CY00344F Naumann, 2014, Latent and delayed action polymerization systems, Macromol. Rapid Commun., 35, 682, 10.1002/marc.201300898 Gregson, 2006, Titanium-salen complexes as initiators for the ring opening polymerisation of rac-lactide, Dalton Trans, 3134, 10.1039/B518266B Gregson, 2006, Redox control within single-site polymerization catalysts, J. Am. Chem. Soc., 128, 7410, 10.1021/ja061398n Broderick, 2011, Redox control of a ring-opening polymerization catalyst, J. Am. Chem. Soc., 133, 9278, 10.1021/ja2036089 Biernesser, 2016, Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst, Angew. Chem. Int. Ed. Engl., 55, 5251, 10.1002/anie.201511793 Wang, 2014, Redox control of group 4 metal ring-opening polymerization activity toward L-lactide and ε-caprolactone, J. Am. Chem. Soc., 136, 11264, 10.1021/ja505883u Broderick, 2011, Redox control of a polymerization catalyst by changing the oxidation state of the metal center, Chem. Commun., 47, 9897, 10.1039/c1cc13117f Mohapatra, 2017, Mechanically controlled radical polymerization initiated by ultrasound, Nat. Chem., 9, 135, 10.1038/nchem.2633 Mckenzie, 2017, Sono-RAFT polymerization in aqueous medium, Angew. Chem. Int. Ed. Engl., 56, 12302, 10.1002/anie.201706771 Wang, 2017, Enhancing mechanically induced ATRP by promoting interfacial electron transfer from piezoelectric nanoparticles to Cu catalysts, Macromolecules, 50, 7940, 10.1021/acs.macromol.7b01597 Wang, 2017, Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst, ACS Macro Lett, 6, 546, 10.1021/acsmacrolett.7b00152 Peterson, 2018, Electrochemically controlled cationic polymerization of vinyl ethers, J. Am. Chem. Soc., 140, 2076, 10.1021/jacs.8b00173 Chmielarz, 2017, Electrochemically mediated atom transfer radical polymerization (eATRP), Prog. Polym. Sci., 69, 47, 10.1016/j.progpolymsci.2017.02.005 Wang, 2019, Electrochemically mediated atom transfer radical polymerization with dithiocarbamates as alkyl pseudohalides, J. Polym. Sci. Part A: Polym. Chem., 57, 376, 10.1002/pola.29197 Qi, 2018, Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide, J. Am. Chem. Soc., 140, 5686, 10.1021/jacs.8b02171 Zhu, 2019, Electro-selective interconversion of living cationic and radical polymerizations, Sci. China Chem., 62, 1023, 10.1007/s11426-019-9450-0 Corrigan, 2016, Photocatalysis in organic and polymer synthesis, Chem. Soc. Rev., 45, 6165, 10.1039/C6CS00185H Mckenzie, 2016, Beyond traditional RAFT: alternative activation of thiocarbonylthio compounds for controlled polymerization, Adv Sci (Weinh), 3, 1500394, 10.1002/advs.201500394 Shanmugam, 2015, Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers, J. Am. Chem. Soc., 137, 9988, 10.1021/jacs.5b05903 Dadashi-Silab, 2016, Photoinduced electron transfer reactions for macromolecular syntheses, Chem. Rev., 116, 10212, 10.1021/acs.chemrev.5b00586 Chen, 2016, Light-controlled radical polymerization: mechanisms, methods, and applications, Chem. Rev., 116, 10167, 10.1021/acs.chemrev.5b00671 Trotta, 2016, Organic catalysts for photocontrolled polymerizations, Synlett, 27, 702, 10.1055/s-0035-1561264 Murata, 2015, Visible-light-controlled homo- and copolymerization of styrenes by a bichromophoric Ir-Pd catalyst, Chem. Commun. (Camb.), 51, 5717, 10.1039/C5CC00611B Theriot, 2016, Organocatalyzed atom transfer radical polymerization driven by visible light, Science, 352, 1082, 10.1126/science.aaf3935 Xu, 2014, A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance, J. Am. Chem. Soc., 136, 5508, 10.1021/ja501745g Satoh, 2020, Interconvertible and switchable cationic/PET-RAFT copolymerization triggered by visible light, Polym. J., 52, 65, 10.1038/s41428-019-0257-5 Fu, 2016, Photoacid-mediated ring opening polymerization driven by visible light, Chem. Commun. (Camb.), 52, 7126, 10.1039/C6CC03084J Leibfarth, 2013, External regulation of controlled polymerizations, Angew. Chem. Int. Ed. Engl., 52, 199, 10.1002/anie.201206476 Zhang, 2018, Synthesis of polymers with on-demand sequence structures via dually switchable and interconvertible polymerizations, Nat. Commun., 9, 2577, 10.1038/s41467-018-05000-2 Peterson, 2018, On demand switching of polymerization mechanism and monomer selectivity with orthogonal stimuli, ACS Cent. Sci., 4, 1228, 10.1021/acscentsci.8b00401 The amount of ferrocenium generated can be estimated by the total amount of charge passed under galvanostatic conditions. An induction period observed corresponds to the amount of time it takes to generate sufficient ferrocenium to initiate polymerization. Farmilo, 1975, Triplet state quenching by ferrocene, Chem. Phys. Lett., 34, 575, 10.1016/0009-2614(75)85565-5 Aoshima, 2014, Interconvertible living radical and cationic polymerization through reversible activation of dormant species with dual activity, Angew. Chem. Int. Ed. Engl., 53, 10932, 10.1002/anie.201406590