Du Fort–Frankel finite difference scheme for Burgers equation

Arabian Journal of Mathematics - Tập 2 Số 1 - Trang 91-101 - 2013
Kanti Pandey1, Lajja Verma2, Amrisha Verma2
1Department of Mathematics and Astronomy, University of Lucknow, Lucknow, 226007, India
2Department of Mathematics, BITS Pilani, Pilani, 333031, Rajasthan, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cole J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

Dhawan, S.; Kapoor, S.; Kumar, S.; Rawat, S.: Contemporary review of techniques for the solution of nonlinear Burgers equation. J. Comput. Sci. doi: 10.1016/j.jocs.2012.06.003

Evans D.J., Abdullah A.R.: The group explicit method for the solution of Burgers equation. Computing 32, 239–253 (1984)

Hopf E.: The partial differential equation u t  + uu x  = ν u xx . Commun. Pure Appl. Math. 3, 201–230 (1950)

Kutluay S., Bahadir A.R., Ozdes A.: Numerical solution of one-dimensional Burgers equation: explicit and exact explicit methods. J. Comput. Appl. Math. 103, 251–261 (1999)

Mittal, R.C.; Jain, R.K.: Numerical solutions of nonlinear Burgers equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218(15), 7839–7855 (2012)

Pandey K., VermaL. Verma A.K.: On a finite difference scheme for Burgers equation. Appl. Math. Comput. 215, 2206–2214 (2009)

Smith G.D.: Numerical Solution of Partial Differential Equations. Oxford University Press, New York (1978)