Xu hướng khô hạn ở sườn phía nam Cao nguyên Tây Tạng trong những thập kỷ gần đây: vai trò của sự thay đổi khí quyển kiểu CGT

Springer Science and Business Media LLC - Tập 59 - Trang 2801-2813 - 2022
Ziqian Wang1,2, Song Yang1,2, Haolin Luo1, Jiandong Li3
1School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
2Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Nghiên cứu này xác định xu hướng khô hạn đáng kể trên sườn phía nam Cao nguyên Tây Tạng (SSTP) vào mùa hè (đặc biệt từ tháng 7 đến tháng 9) trong giai đoạn 1980–2018. Phân tích ngân sách ẩm cho thấy xu hướng khô hạn chủ yếu do giảm cường độ truyền độ ẩm đứng, điều này xảy ra do chuyển động đi lên suy yếu, chủ yếu là kết quả của một xu hướng khí áp cao xuất hiện ở khu vực phía đông bắc Tây Tạng. Anticyclone bất thường này có thể làm suy yếu sự phân kỳ tầng đối lưu trên SSTP. Ngoài ra, phân tích năng lượng tĩnh ẩm cho thấy nhánh phía nam của anticyclone bất thường này đã truyền không khí có độ enthalpy ẩm thấp vào SSTP, điều này cũng ức chế chuyển động đi lên và đối lưu tại địa phương. Hơn nữa, xu hướng khí áp cao ở khu vực phía đông bắc Tây Tạng không phải là một hiện tượng địa phương, mà thực sự liên quan đến sự thay đổi khí quyển quy mô lớn ở vĩ độ giữa, thể hiện mẫu kết nối toàn cầu (CGT) tương tự. Kết quả nghiên cứu cho thấy rằng xu hướng tuần hoàn khí quyển kiểu CGT dài hạn đóng vai trò quan trọng trong việc kích thích xu hướng khô hạn trên SSTP trong những thập kỷ gần đây.

Từ khóa

#Cao nguyên Tây Tạng #xu hướng khô hạn #khí áp cao #đối lưu #sự thay đổi khí quyển kiểu CGT

Tài liệu tham khảo

Adler RF, Huffman GJ, Chang A, Ferrara R, Xie P-P, Janowiak J et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167 Back L, Bretherton C (2006) Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys Res Lett 33:L17810 Boos W, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–223 Chou C, Neelin J (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17(13):2688–2701 Ding Q, Wang B (2005) Circumglobal teleconnection in the northern Hemisphere summer. J Clim 18:3483–3505 Ding Q, Schweiger A, L’Heureux M, Battisti D, Po-Chedley S, Johnson N (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–296 Duan A, Li F, Wang M, Wu G (2011) Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J Clim 24:5671–5682 Duan A, Wu G, Liu Y, Ma Y, Zhao P (2012) Weather and climate effects of the Tibetan Plateau. Adv Atmos Sci 29:978–992 Gao Y, Cuo L, Zhang Y (2014) Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J Clim 27:1876–1893 Gao Y, Li X, Leung R, Chen D, Xu J (2015) Aridity changes in the Tibetan Plateau in a warming climate. Environ Res Lett 10:034013 Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462 He C, Wang Z, Zhou T, Li T (2019) Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J Clim 32:3373–3388 Hill S (2019) Theories for past and future monsoon rainfall changes. Curr Clim Change Rep 5:160–171 Hong X, Lu R, Li S (2017) Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s. Environ Res Lett 12:094007 Hsu H, Liu X (2003) Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys Res Lett 30:2066 Hu S, Zhou T, Wu B (2021) Impact of developing ENSO on Tibetan Plateau summer rainfall. J Clim 34:3385–3400 Huffman G, Bolvin D, Nelkin E, Wolff D, Adler R, Gu G et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55 Hui C, Zheng X (2018) Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability. Clim Dyn 51:3597–3611 Jiang X, Ting M (2017) A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J Clim 30:9607–9620 Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349 Kitoh A (2004) Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM experiments. J Clim 17:783–802 Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H et al (2015) The JRA-55 Reanalysis: General specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48 Li L, Yang S, Wang Z, Zhu X, Tang H (2010) Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct Antarct Alp Res 42:449–457 Li Z, Lau KM, Ramanathan V, Wu G, Ding Y, Manoj MG et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54:866–929 Lin S, Wu B, Zhou T (2016) Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic Multidecadal Oscillation? Atmos Ocean Sci Lett 9:451–457 Liu X, Yin Z (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J Clim 14:2896–2909 Liu B, Wu G, Mao J, He J (2013) Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J Clim 26:2976–2991 Liu H, Duan K, Li M, Shi P, Yang J, Zhang X, Sun J (2015) Impact of the North Atlantic Oscillation on the dipole oscillation of summer precipitation over the central and eastern Tibetan Plateau. Int J Climatol 35:4539–4546 Liu Y, Chen H, Hu X (2021) The unstable relationship between the precipitation dipole pattern in the Tibetan Plateau and summer NAO. Geophys Res Lett 48:e2020GL091941 Lu C, Yu G, Xie G (2005) Tibetan Plateau serves as a water tower. IEEE Int Geosci Remote Sens Sympos 5:3120–3123 Lu M, Yang S, Li Z, He B, He S, Wang Z (2018) Possible effect of the Tibetan Plateau on the “upstream” climate over West Asia, North Africa, South Europe and the North Atlantic. Clim Dyn 51:1485–1498 Lu M, Huang B, Li Z, Yang S, Wang Z (2019) Role of Atlantic air–sea interaction in modulating the effect of Tibetan Plateau heating on the upstream climate over Afro-Eurasia–Atlantic regions. Clim Dyn 53:509–519 Mason R, Anderson C (1963) The development and decay of the 100-mb summertime anticyclone over southern Asia. Mon Weather Rev 91:3–12 Neelin J, Held I (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12 Neelin J, Chou C, Su H (2003) tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett 30(24):2275 Peng D, Zhou T (2017) Why was the arid and semiarid northwest China getting wetter in the recent decades? J Geophys Res Atmos 122:9060–9075 Poudel DD, Duex TW (2017) Vanishing springs in Nepalese mountains: assessment of water sources, farmers’ perceptions, and climate change adaptation. Mt Res Dev 37:35–46 Saeed S, Lipzig N, Müller W, Saeed F, Zanchettin D (2014) Influence of the circumglobal wave-train on European summer precipitation. Clim Dyn 43:503–515 Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40 Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392 Sun J, Yang K, Guo W, Wang Y, He J, Lu H (2020) Why has the Inner Tibetan Plateau become wetter since the mid-1990s? J Clim 33:8507–8522 Teng H, Branstator G (2019) Amplification of waveguide teleconnections in the boreal summer. Curr Clim Change Rep 5:421–432 Wang S-Y, Gillies R (2013) Influence of the Pacific quasi-decadal oscillation on the monsoon precipitation in Nepal. Clim Dyn 40:95–107 Wang Z, Duan A, Wu G, Yang S (2016) Mechanism for occurrence of precipitation over the southern slope of the Tibetan Plateau without local surface heating. Int J Climatol 36:4164–4171 Wang L, Xu P, Chen W, Liu Y (2017a) Interdecadal variations of the silk road pattern. J Clim 30:9915–9932 Wang Z, Duan A, Yang S, Ullah K (2017b) Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J Geophys Res Atmos 122:614–630 Wang Z, Yang S, Duan A, Hua W, Ullah K, Liu S (2019) Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. Clim Dyn 52:6121–6130 Wu G, Liu Y, He B, Bao Q, Duan A, Jin F (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:404 Wu B, Lin J, Zhou T (2016a) Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos Sci Lett 17:446–452 Wu G, Zhuo H, Wang Z, Liu Y (2016b) Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over the Tibetan Plateau. Sci China Earth Sci 59:1996–2008 Wu Z, Zhang P, Chen H, Li Y (2016c) Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Clim Dyn 46:3405–3417 Wu B, Zhou T, Li T (2017) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. J Clim 30:9621–9635 Xu X, Lu C, Shi X, Gao S (2008) World water tower: an atmospheric perspective. Geophys Res Lett 35:L20815 Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change 112:79–91 Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667 Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415 Ye D-Z, Wu G (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys 67:181–198 You Q, Min J, Zhang W, Pepin N, Kang S (2015) Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn 45:791–806 Yue S, Wang B, Yang K, Xie Z, Lu H, He J (2020) Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau. Environ Res Lett 16:014011 Zangvil A, Portis DH, Lamb PJ (2004) Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part II: recycling of local evapotranspiration and association with soil moisture and crop yields. J Clim 17:3283–3301 Zhang L, Su F, Yang D et al (2013) Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J Geophys Res Atmos 118:8500–8518 Zhang C, Tang Q, Chen D (2017a) Recent changes in the moisture source of precipitation over the Tibetan Plateau. J Clim 30:1807–1819 Zhang G, Yao T, Shum CK, Yi S, Yang K, Xie H et al (2017b) Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys Res Lett 44:5550–5560 Zhang G, Luo W, Chen W, Zheng G (2019) A robust but variable lake expansion on the Tibetan Plateau. Sci Bull 64:1306–1309 Zhao P, Chen L (2001) Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci China Ser D 44:858–864