Sự thay đổi giữa khô và ngập nước làm tăng tỉ lệ tinh thể và thay đổi tính chất bề mặt của lớp màng sắt trên rễ lúa (Oryza sativa)

Springer Science and Business Media LLC - Tập 25 - Trang 3571-3587 - 2017
Xu-Jian Yang1, Zhihong Xu2, Hong Shen1
1College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People’s Republic of China
2Environmental Futures Research Institute, Griffith University, Nathan, Australia

Tóm tắt

Lớp màng sắt (IP) rất có giá trị trong quản lý chất dinh dưỡng và khả năng chống chịu ô nhiễm cho cây lúa (Oryza sativa) vì nó có khả năng hấp phụ các chất dinh dưỡng và ion độc hại. Tỉ lệ tinh thể (CR) có thể được định nghĩa là tỉ lệ giữa sắt tinh thể (CI) và tổng số IP để mô tả tính tinh thể của IP. Mặc dù kiến thức về IP đã rất phong phú, thông tin về mối quan hệ giữa điều kiện hình thành, tính chất bề mặt của nó và CR vẫn còn chưa đủ. Trong nghiên cứu này, việc trồng cây lúa trên cát thạch anh và đất được tiến hành để khám phá ảnh hưởng của sự thay đổi giữa khô và ngập nước (DSA) đối với CI, sắt vô định hình (AI), CR, khả năng oxy hóa của rễ (ROC) và tính chất bề mặt của IP trong các thời gian và giai đoạn điều trị khác nhau. Việc điều trị DSA trong 14 ngày đã làm tăng CI lên 2,20 lần so với sau khi ngập nước liên tục (CS) nhưng làm giảm AI xuống còn 72,3% so với sau CS. Tương ứng, CR đã tăng lên 6,89% từ 4,08%. Đặc biệt, CR của IP sau khi DSA kết thúc với tình trạng ngập nước và kết thúc với tình trạng khô lần lượt là 6,89% và 4,23%. Ngoài ra, ROC sau 14 ngày DSA đã tăng lên gấp đôi so với sau CS. Kết quả từ kính hiển vi điện tử quét cho thấy rằng DSA trong 14 ngày đã tạo ra các tấm mỏng hơn với các hạt mịn hơn trong IP so với sau CS. Kết quả từ nhiễu xạ tia X cho thấy rằng IP chứa tỷ lệ cao hơn của goethite, lepidocrocite, magnetite và hematite sau DSA so với sau CS. Tính chất điện tích biến đổi và diện tích bề mặt của IP sau DSA chỉ đạt 26,5% và 32,0% so với sau CS. Nhìn chung, kết quả của chúng tôi chỉ ra rằng sự thay đổi giữa khô và ngập nước ở mức độ thích hợp đã thúc đẩy ROC và sự chuyển đổi từ AI thành CI, và do đó làm tăng CR của IP, đồng thời thay đổi các tính chất bề mặt của nó.

Từ khóa

#lớp màng sắt #lúa #sắt tinh thể #sắt vô định hình #khả năng oxy hóa của rễ #tính chất bề mặt

Tài liệu tham khảo

Bacha RE, Hossner LR (1977) Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Sci Soc Am J 41:931–935 Begg CBM, Kirk GJD, MacKenzie AF, Neue HU (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477 Boonrattanakij N, Lu MC, Anotai J (2011) Iron crystallization in a fluidized-bed Fenton process. Water Res 45:3255–3262 Bravin MN, Travassac F, Le Floch M, Hinsinger P, Garnier J (2008) Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study. Plant Soil 312:207–218 Cai M, Zhang S, Xing C, Wang F, Zhu L, Wang N, Lin L (2012) Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance. Plant Soil 353:155–167 Cappuyns V, Swennen R (2006) Comparison of metal release from recent and aged Fe-rich sediments. Geoderma 137:242–251 Chabbi A (1999) Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies. New Phytol 144:133–142 Chen RF, Shen RF (2008) Root phosphate exudation and pH shift in the rhizosphere are not responsible for aluminum resistance in rice. Acta Physiol Plant 30:817–824 Chen CC, Dixon JB, Turner FT (1980) Iron coatings on rice roots: morphology and models of development. Soil Sci Soc Am J 44:1113–1119 Chen X, Kong W, He J, Liu W, Smith SE, Smith FA (2008) Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? J Plant Nutr Soil Sci 171:193–199 Chong YX, Yu GW, Cao XY, Zhong HT (2013) Effect of migration of amorphous iron oxide on phosphorous spatial distribution in constructed wetland with horizontal sub-surface flow. Ecol Eng 53:126–129 Christensen KK, Cathleen W (1998) Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna. Aquat Bot 61:111–122 Colombo C, Palumbo G, Sellitto VM, Cho HG, Amalfitano C, Adamo P (2015) Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions. J Geochem Explor 151:50–56 Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164–175 Contin M, Mondini C, Leita L, Zaccheo P, Crippa L, De Nobili M (2008) Immobilisation of soil toxic metals by repeated additions of Fe(II) sulphate solution. Geoderma 147:133–140 Cornu S, Cattle JA, Samouelian A, Laveuf C, Guilherme LRG, Alberic P (2009) Impact of redox cycles on manganese, iron, cobalt, and lead in nodules. Soil Sci Soc Am J 73:1231–1241 Deng D, Wu SC, Wu FY, Deng H, Wong MH (2010) Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ Pollut 158:2589–2595 Duiker SW, Rhoton FE, Torrent J, Smeck NE, Lal R (2003) Iron (hydr)oxide crystallinity effects on soil aggregation. Soil Sci Soc Am J 67:606–611 Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press, Boca Raton Fresno T, Penalosa JM, Santner J, Puschenreiter M, Prohaska T, Moreno-Jimenez E (2016) Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environ Pollut 216:215–222 Frommer J, Voegelin A, Dittmar J, Marcus MA, Kretzschmar R (2011) Biogeochemical processes and arsenic enrichment around rice roots in paddy soil: results from micro-focused X-ray spectroscopy. Eur J Soil Sci 62:305–317 Fu Y (2016) Physiological and molecular mechanisms of alternate wetting and drying enhances formation of iron plaque on root surface of rice seedlings. Dissertation, South China Agricultural University (in Chinese with English abstract) Fu Y, Yang X, Shen H (2014) The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency. Acta Physiol Plant 36:179–190 Ge L, Cang L, Yang J, Zhou D (2016) Effects of root morphology and leaf transpiration on Cd uptake and translocation in rice under different growth temperature. Environ Sci Pollut R 23:24205–24214 Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868 Haque KMS, Eberbach PL, Weston LA, Dyall-Smith M, Howitt JA (2016) Variable impact of rice (Oryza sativa) on soil metal reduction and availability of pore water Fe2+ and Mn2+ throughout the growth period. Chem Ecol 32:182–200 Huang Y, Hu Y, Liu Y (2010) Combined effects of chromium and arsenic on rice seedlings (Oryza sativa L.) growth in a solution culture supplied with or without P fertilizer. Sci China Life Sci 53:1459–1466 Jiang FY, Chen X, Luo AC (2009) Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquat Ecol 43:879–890 Kirk GJD (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol 159:185–194 Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homeostasis and their application in graminaceous crops. P Jpn Acad B-Phys 86:900–913 Lee S, Kim YS, Jeon US, Kim YK, Schjoerring JK, An G (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33:269–275 Liang Y, Zhu YG, Xia Y, Li Z, Ma Y (2006) Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Ann Appl Biol 149:305–312 Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.) Environ Sci Technol 40:5730–5736 Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ 394:361–368 Liu J, Leng X, Wang M, Zhu Z, Dai Q (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Safe 74:1304–1309 Majerus V, Bertin P, Lutts S (2009) Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.) seedlings exposed to short term iron toxicity. Plant Soil 324:253–265 Martinez CE, McBride MB (2001) Cd, cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: aging effects on metal solubility and extractability by citrate. Environ Toxicol Chem 20:122–126 Mehlich A (1960) Charge characterization of soils. Trans 7th Int Congr. Soil Sci 2:292–302 Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht Mi W, Cai J, Tuo Y, Zhu H, Hua Y, Zhao J, Zhou W, Zhu D (2013) Distinguishable root plaque on root surface of Potamogeton crispus grown in two sediments with different nutrient status. Limnology 14:1–11 Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa M (2016) The role of root size versus root efficiency in phosphorus acquisition in rice. J Exp Bot 67:1179–1189 Pan Y, Koopmans GF, Bonten LTC, Song J, Luo Y, Temminghoff EJM, Comans RNJ (2014) Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils. J Soils Sediments 14:1713–1726 Patrick WH, Jugsujinda A (1992) Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci Soc Am J 56:1071–1073 Pi N, Tam NF, Wong MH (2010) Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots. Environ Pollut 158:381–387 Rahman MA, Rahman MM, Kadohashi K, Maki T, Hasegawa H (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.) Chemosphere 84:439–445 Ratering S, Schnell S (2000) Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48:341–365 Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193 Song J, Zhao F, McGrath SP, Luo Y (2006) Influence of soil properties and aging on arsenic phytotoxicity. Environ Toxicol Chem 25:1663–1670 Sposito G (2008) The chemistry of soils. Oxford University Press, New York Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70:1254–1257 Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Ac 70:1710–1727 Violante A, Barberis E, Pigna M, Boero V (2003) Factors affecting the formation, nature, and properties of iron precipitation products at the soil–root interface. J Plant Nutr 26:1889–1908 Wang T, John P (1999) Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Sci Soc Am J 63:247–252 Wang X, Chen X, Yang J, Wang Z, Sun G (2009) Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. J Environ Sci 21:1562–1568 Xu B, Yu S (2013) Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Ann Bot 111:1189–1195 Xu D, Xu J, He Y, Huang PM (2009) Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants. Water Air Soil Pollut 200:79–87 Yamada H, Takeda C, Mizushima A, Yoshino K, Yonebayashi K (2005) Effect of oxidizing power of roots on iodine uptake by rice plants. Soil Sci Plant Nutr 51:141–145 Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48:1549–1556 Ye Z, Baker AJM, Wong M, Willis AJ (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67 Yoshida S, Douglas A, Forno JC (1976) Laboratory manual for physiological studies of rice. IRRI, Los Banos Zhang X, Zhang F, Mao D (1999) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.)–phosphorus uptake. Plant Soil 209:187–192 Zhang F, Shen J, Li L, Liu X (2004) An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 260:89–99 Zhang Y, Zheng GH, Liu P, Song JM, Xu GD, Cai MZ (2011) Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Acta Physiol Plant 33:683–689 Zhong S, Shi J, Xu J (2010) Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L.) grown in artificial Pb-contaminated soil. J Soils Sediments 10:964–970 Zhou H, Zeng M, Zhou X, Liao B, Peng P, Hu M, Zhu W, Wu Y, Zou Z (2015) Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil 386:317–329