Dry reforming of methane for syngas production over Ni–Co-supported Al2O3–MgO catalysts

Nur Azeanni Abd Ghani1, Abbas Azapour2, Syed Anuar Faua’ad Syed Muhammad3, Nasser Mohamed Ramli4, Dai‐Viet N. Vo5, Bawadi Abdullah4
1CO2 Utilization Group, Institute of Contaminant Management for Oil and Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
2Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
3Bioprocess and Polymer Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia
4Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
5Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuh Raya Tun Razak, Gambang, Kuantan, 26300, Pahang, Malaysia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbasi Z, Haghighi M, Fatehifar E, Rahemi N (2012) Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol–gel methods used for total oxidation of toluene. Asia Pac J Chem Eng 7(6):868–876

Abdollahifar M, Haghighi M, Sharifi M (2016) Sono-synthesis and characterization of bimetallic Ni–Co/Al2O3–MgO nanocatalyst: effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. Ultrason Sonochem 31:173–183

Abdullah B, Abd Ghani NA, Vo D-VN (2017) Recent advances in dry reforming of methane over Ni-based catalyst. J Clean Prod 162:170–185

Al-Fatesh ASA, Fakeeha AH (2012) Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc 16:55–61

Alotaibi R, Alenazey F, Alotaibi F, Wei N, Al-Fatesh A, Fakeeha A (2015) Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Appl Petrochem Res 5(4):329–337

Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: analysis review. Renew Sustain Energy Rev 85(3):2570–2585

Asencios Yvan JO, Assaf EM (2013) Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: effect of nickel content. Fuel Process Technol 106:247–252

Ay H, Üner D (2015) Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl Catal B 179:128–138

Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41(1):1–42

Dokamaingam P, Laosiripojana N, Soottitantawat A, Assabumrungrat S (2010) Alternative concept for SOFC with direct internal reforming operation: benefits from inserting catalyst rod. AIChE J 56(6):1639–1650

Du X, Zhang D, Shi L, Gao R, Zhang J (2012) Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 116(18):10009–10016

Eltegaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, Zamaniyan A, Zarrin Ghalam A (2012) Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2–γ-alumina: effects of support composition and water addition. Int J Hydrog Energy 37:4107–4118

Fan M-S, Abdullah AZ, Bhatia S (2009) Catalytic technology for carbon dioxide reforming of methane to synthesis gas. Chem Catal Chem 1(2):192–208

Fan M-S, Abdullah AZ, Bhatia S (2011) Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: process optimization. Int J Hydrog Energy 36(8):4875–4886

Ginsburg JM, Pina J, Solh TE, Lasa HI (2005) Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models. Ind Eng Chem Res 44:4846–4854

Gonzalez RD, Lopez T, Gomez R (1997) Sol–gel preparation of supported metal catalysts. Catal Today 35(3):293–317

Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273(1–2):75–82

Hassani Rad SJ, Haghighi M, Alizadeh Eslami A, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: effect of process conditions, synthesis method and support composition. Int J Hydrog Energy 41(11):5335–5350

Iqbal F, Mutalib MIA, Shaharun MS, Khan M, Abdullah B (2016) Synthesis of ZnFe2O4 using sol–gel method: effect of different calcination parameters. Proc Eng 148:787–794

Jiang Z, Liao X, Zhao Y (2013) Comparative study of the dry reforming of methane on fludised aerogel and xeroge; Ni/Al2O3 catalysts. Appl Petrochem Res 3(3–4):91–99

Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Bin Park S (2008) A highly effective and stable nano-sized Ni/MgO–Al2O3 catalyst for gas to liquids (GTL) process. Int J Hydrog Energy 33:2036–2043

Kumar N, Wang Z, Kanitkar S, Spivey JJ (2016) Methane reforming over Ni-based pyrochlore catalyst: deactivation studies for different reactions. Appl Petrochem Res 6(3):201–207

Li H, Bok K, Park Y, Yoo J (2011) An efficient mobile peer to peer architecture in wireless Ad Hoc network. In: Lee G, Howard D, Ślęzak D

(ed) Convergence and hybrid information technology: 5th international conference, ICHIT 2011, Daejeon, Korea, September 22-24, 2011. Proceedings. Springer, Berlin, pp 1-8

Liu D, Quek X-Y, Wah HHA, Zeng G, Li Y, Yang Y (2009) Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal Today 148(3–4):243–250

Min J-E, Lee Y-J, Park H-G, Zhang C, Jun K-W (2015) Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: effects of Mg/Al ratios. J Ind Eng Chem 26:375–383

Papadopoulou C, Matralis H, Verykios X (2012) Utilization of biogas as a renewable carbon source: dry reforming of methane. In: Guczi L, Erdôhelyi A (eds) Catalysis for alternative energy generation. Springer Science + Business Media, New York, pp 57–127

Pompeo F, Nichio NN, Souza MMVM, Cesar DV, Ferretti OA, Schmal M (2007) Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Appl Catal A 316(2):175–183

Rostrupnielsen JR, Hansen JHB (1993) CO2-reforming of methane over transition metals. J Catal 144(1):38–49

Sajjadi SM, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. J Sol Gel Sci Technol 70:111–124

Selvarajah K, Phuc NHH, Abdullah B, Alenazey F, Vo D-VN (2015) Syngas Production from methane dry reforming over Ni/Al2O3 catalyst. Res Chem Intermed 42(1):269–288

Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee K-Y, Moon DJ (2018) Dry reforming of methane over Ni/ZrO2–Al2O3 catalysts: effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32

Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrog Energy 34(16):6646–6654

Xu L, Song H, Chou L (2013) Ordered mesoporous MgO–Al2O3 composite oxides supported Ni-based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int J Hydrog Energy 38(18):7307–7325

Zhang X, Zhang Q, Tsubaki N, Tan Y, Han Y (2015) Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix. Fuel 147:243–252

Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. J Catal 158(1):51–63