Dry reforming of methane for syngas production over Ni–Co-supported Al2O3–MgO catalysts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbasi Z, Haghighi M, Fatehifar E, Rahemi N (2012) Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol–gel methods used for total oxidation of toluene. Asia Pac J Chem Eng 7(6):868–876
Abdollahifar M, Haghighi M, Sharifi M (2016) Sono-synthesis and characterization of bimetallic Ni–Co/Al2O3–MgO nanocatalyst: effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4. Ultrason Sonochem 31:173–183
Abdullah B, Abd Ghani NA, Vo D-VN (2017) Recent advances in dry reforming of methane over Ni-based catalyst. J Clean Prod 162:170–185
Al-Fatesh ASA, Fakeeha AH (2012) Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc 16:55–61
Alotaibi R, Alenazey F, Alotaibi F, Wei N, Al-Fatesh A, Fakeeha A (2015) Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Appl Petrochem Res 5(4):329–337
Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: analysis review. Renew Sustain Energy Rev 85(3):2570–2585
Asencios Yvan JO, Assaf EM (2013) Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: effect of nickel content. Fuel Process Technol 106:247–252
Ay H, Üner D (2015) Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl Catal B 179:128–138
Dokamaingam P, Laosiripojana N, Soottitantawat A, Assabumrungrat S (2010) Alternative concept for SOFC with direct internal reforming operation: benefits from inserting catalyst rod. AIChE J 56(6):1639–1650
Du X, Zhang D, Shi L, Gao R, Zhang J (2012) Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 116(18):10009–10016
Eltegaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, Zamaniyan A, Zarrin Ghalam A (2012) Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2–γ-alumina: effects of support composition and water addition. Int J Hydrog Energy 37:4107–4118
Fan M-S, Abdullah AZ, Bhatia S (2009) Catalytic technology for carbon dioxide reforming of methane to synthesis gas. Chem Catal Chem 1(2):192–208
Fan M-S, Abdullah AZ, Bhatia S (2011) Hydrogen production from carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2 catalyst: process optimization. Int J Hydrog Energy 36(8):4875–4886
Ginsburg JM, Pina J, Solh TE, Lasa HI (2005) Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamic and kinetic models. Ind Eng Chem Res 44:4846–4854
Gonzalez RD, Lopez T, Gomez R (1997) Sol–gel preparation of supported metal catalysts. Catal Today 35(3):293–317
Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273(1–2):75–82
Hassani Rad SJ, Haghighi M, Alizadeh Eslami A, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: effect of process conditions, synthesis method and support composition. Int J Hydrog Energy 41(11):5335–5350
Iqbal F, Mutalib MIA, Shaharun MS, Khan M, Abdullah B (2016) Synthesis of ZnFe2O4 using sol–gel method: effect of different calcination parameters. Proc Eng 148:787–794
Jiang Z, Liao X, Zhao Y (2013) Comparative study of the dry reforming of methane on fludised aerogel and xeroge; Ni/Al2O3 catalysts. Appl Petrochem Res 3(3–4):91–99
Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Bin Park S (2008) A highly effective and stable nano-sized Ni/MgO–Al2O3 catalyst for gas to liquids (GTL) process. Int J Hydrog Energy 33:2036–2043
Kumar N, Wang Z, Kanitkar S, Spivey JJ (2016) Methane reforming over Ni-based pyrochlore catalyst: deactivation studies for different reactions. Appl Petrochem Res 6(3):201–207
Li H, Bok K, Park Y, Yoo J (2011) An efficient mobile peer to peer architecture in wireless Ad Hoc network. In: Lee G, Howard D, Ślęzak D
(ed) Convergence and hybrid information technology: 5th international conference, ICHIT 2011, Daejeon, Korea, September 22-24, 2011. Proceedings. Springer, Berlin, pp 1-8
Liu D, Quek X-Y, Wah HHA, Zeng G, Li Y, Yang Y (2009) Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal Today 148(3–4):243–250
Min J-E, Lee Y-J, Park H-G, Zhang C, Jun K-W (2015) Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: effects of Mg/Al ratios. J Ind Eng Chem 26:375–383
Papadopoulou C, Matralis H, Verykios X (2012) Utilization of biogas as a renewable carbon source: dry reforming of methane. In: Guczi L, Erdôhelyi A (eds) Catalysis for alternative energy generation. Springer Science + Business Media, New York, pp 57–127
Pompeo F, Nichio NN, Souza MMVM, Cesar DV, Ferretti OA, Schmal M (2007) Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2. Appl Catal A 316(2):175–183
Rostrupnielsen JR, Hansen JHB (1993) CO2-reforming of methane over transition metals. J Catal 144(1):38–49
Sajjadi SM, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: effect of MgO addition via sol-gel method on catalytic properties and hydrogen yield. J Sol Gel Sci Technol 70:111–124
Selvarajah K, Phuc NHH, Abdullah B, Alenazey F, Vo D-VN (2015) Syngas Production from methane dry reforming over Ni/Al2O3 catalyst. Res Chem Intermed 42(1):269–288
Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee K-Y, Moon DJ (2018) Dry reforming of methane over Ni/ZrO2–Al2O3 catalysts: effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32
Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrog Energy 34(16):6646–6654
Xu L, Song H, Chou L (2013) Ordered mesoporous MgO–Al2O3 composite oxides supported Ni-based catalysts for CO2 reforming of CH4: effects of basic modifier and mesopore structure. Int J Hydrog Energy 38(18):7307–7325
Zhang X, Zhang Q, Tsubaki N, Tan Y, Han Y (2015) Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix. Fuel 147:243–252