Dry-gel conversion synthesis of magnetic BEA-type zeolites for antibiotics adsorption

Journal of Sol-Gel Science and Technology - Tập 105 - Trang 511-524 - 2023
Vanpaseuth Phouthavong1, Takeshi Hagio1,2, Supinya Nijpanich3, Jae-Hyeok Park2, Masatake Hiraiwa1, Teeranun Srihirunthanon4,5, Nutchanan Chantanurak4,5, Ratana Rujiravanit4,5, Yuki Kamimoto6, Xinling Li7, Long Kong8, Liang Li8, Ryoichi Ichino1,2
1Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
2Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
3Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
4The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
5Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
6Department of Environmental Science, Faculty of Human Environment, University of Human Environments, Okazaki, Japan
7School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
8School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

The dry-gel conversion method (DGC) is a promising synthesis protocol for preparing magnetic zeolite composites as it yields homogeneous composite particles with more rapid crystallization, smaller reactor volume, and less waste production than the conventional hydrothermal method. This work investigates the optimal conditions for preparing magnetic BEA-type zeolites using the DGC method, including the gel/water ratio, crystallization temperature and time. Precursor dry-gel incorporating well-dispersed magnetite was subjected to crystallization under water vapor atmosphere with a gel/water ratio of 0.5–2, crystallization temperature of 140–200 °C for 1.5–12 h, followed by characterization using X-ray diffraction and scanning electron microscopy. The optimum conditions were found to be gel/water ratio of 1 and crystallization at 180 °C for 12 h. Magnetic properties of collected samples were evaluated using a vibrating-sample magnetometer after calcination at 400–500 °C for 12 h. Products calcined below 450 °C showed good magnetic properties. Adsorption of sulfadiazine using the BEA and magnetic BEA-type zeolites was evaluated in a 10–50 mg/l range. Results revealed favorable multilayer-type adsorption of sulfadiazine onto both non-magnetic and magnetic BEA-type zeolites (Freundlich model). These indicate that DGC method is suitable for preparing high-silica magnetic BEA-type zeolites with potential for antibiotic removal.

Tài liệu tham khảo

Jiang N, Shang R, Heijman SGJ, Rietveld LC (2018) High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 144:145–161. https://doi.org/10.1016/j.watres.2018.07.017 Naber JE, de Jong KP, Stork WHJ, Kuipers HPCE, Post MFM (1994) Industrial applications of zeolite catalysis. Stud Surf Sci Catal 84:2197–2219. https://doi.org/10.1016/S0167-2991(08)63783-0 Yilmaz B, Müller U (2009) Catalytic applications of zeolites in chemical industry. Top Catal 52:888–895. https://doi.org/10.1007/s11244-009-9226-0 Eroglu N, Emekci M, Athanassiou CG (2017) Applications of natural zeolites on agriculture and food production. J Sci Food Agric 97:3487–3499. https://doi.org/10.1002/jsfa.8312 Ramesh K, Reddy DD (2011) Zeolites and their potential uses in agriculture. In: Sparks DL (ed) Advances in agronomy. Academic Press, New York, p 219–241 Bacakova L, Vandrovcova M, Kopova I, Jirka I (2018) Applications of zeolites in biotechnology and medicine—a review. Biomater Sci 6:974–989. https://doi.org/10.1039/C8BM00028J Valdés MG, Pérez-Cordoves AI, Díaz-García ME (2006) Zeolites and zeolite-based materials in analytical chemistry. TrAC Trends Anal Chem 25:24–30. https://doi.org/10.1016/j.trac.2005.04.016 Jalili V, Barkhordari A, Ghiasvand A (2020) New extraction media in microextraction techniques: a review of reviews. Microchem J 153:104368. https://doi.org/10.1016/j.microc.2019.104386 Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Micropor Mesopor Mater 144:15–18. https://doi.org/10.1016/j.micromeso.2011.03.024 Montalvo S, Huiliñir C, Borja R, Sánchez E, Herrmann C (2020) Application of zeolites for biological treatment processes of solid wastes and wastewaters—a review. Bioresour Technol 301:122808. https://doi.org/10.1016/j.biortech.2020.122808 Khaleque A, Alam MDM, Hoque M, Mondal S, Haider JB, Xu B, Johir MAH, Karmakar AK, Zhou JL, Ahmed MB, Moni MA (2020) Zeolite synthesis from low-cost materials and environmental applications: a review. Environ Adv 2:100019. https://doi.org/10.1016/j.envadv.2020.100019 Seifrtová M, Nováková L, Lino C, Pena A, Solich P (2009) An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal Chim Acta 649:158–179. https://doi.org/10.1016/j.aca.2009.07.031 Polianciuc SI, Gurzău AE, Kiss B, Ştefan MG, Loghin F (2020) Antibiotics in the environment: causes and consequences. Med Pharm Rep. 93:231–240. https://doi.org/10.15386/mpr-1742 Dadfarnia S, Hajishabani AM, Rad HF (2011) Indirect determination of sulfadiazine by cloud point extraction/flow injection-flame atomic absorption (CPE/FI-FAAS) spectrometry. J Chin Chem Soc 58:503–508. https://doi.org/10.1002/JCCS.201190013 Liu K, Xu S, Zhang M, Kou Y, Zhou X, Luo K, Hu L, Liu X, Liu M, Bai L (2016) Estimation of the toxicity of sulfadiazine to Daphnia magna using negligible depletion hollow-fiber liquid-phase microextraction independent of ambient pH. Sci Rep 6:39798. https://doi.org/10.1038/srep39798 Paumelle M, Donnadieu F, Joly M, Besse-Hoggan P, Artigas J (2021) Effects of sulfonamide antibiotics on aquatic microbial community composition and functions. Environ Int 146:106198. https://doi.org/10.1016/j.envint.2020.106198 Phoon BL, Ong CC, Mohamed Saheed MSM, Show PL, Chang JS, Ling TC, Lam SS, Juan JC (2020) Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater 400:122961. https://doi.org/10.1016/j.jhazmat.2020.122961 Lu ZY, Ma YL, Zhang JT, Fan NS, Huang BC, Jin RC (2020) A critical review of antibiotic removal strategies: performance and mechanisms. J Water Process Eng 38:101681. https://doi.org/10.1016/j.jwpe.2020.101681 Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842. https://doi.org/10.1080/10643380801977610 Braschi I, Blasioli S, Gigli L, Gessa CE, Alberti A, Martucci A (2010) Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. J Hazard Mater 178:218–225. https://doi.org/10.1016/j.jhazmat.2010.01.066 Blasioli S, Martucci A, Paul G, Gigli L, Cossi M, Johnston CT, Marchese L, Braschi I (2014) Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural, spectroscopic, and computational approach. J Colloid Interface Sci 419:148–159. https://doi.org/10.1016/j.jcis.2013.12.039 de Sousa DNR, Insa S, Mozeto AA, Petrovic M, Chaves TF, Fadini PS (2018) Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205:137–146. https://doi.org/10.1016/j.chemosphere.2018.04.085 Fukahori S, Fujiwara T, Funamizu N, Matsukawa K, Ito R (2013) Adsorptive removal of sulfonamide antibiotics in livestock urine using the high-silica zeolite HSZ-385. Water Sci Technol 67:319–325. https://doi.org/10.2166/wst.2012.513 Fukahori S, Fujiwara T (2014) Modeling of sulfonamide antibiotic removal by TiO2/high-silica zeolite HSZ-385 composite. J Hazard Mater 272:1–9. https://doi.org/10.1016/j.jhazmat.2014.02.028 Braschi I, Blasioli S, Buscaroli E, Montecchio D, Martucci A (2016) Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics. J Environ Sci 43:302–312. https://doi.org/10.1016/j.jes.2015.07.017 Braschi I, Martucci A, Blasioli S, Mzini LL, Ciavatta C, Cossi M (2016) Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: an interdisciplinary study. Chemosphere 155:444–452. https://doi.org/10.1016/j.chemosphere.2016.04.008 Martucci A, Cremonini MA, Blasioli S, Gigli L, Gatti G, Marchese L, Braschi I (2013) Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: a structural and spectroscopic combined study. Micropor Mesopor Mater 170:274–286. https://doi.org/10.1016/j.micromeso.2012.11.031 Zuo X, Qian C, Ma S, Xiong J (2020) Sulfonamide antibiotics sorption by high silica ZSM-5: effect of pH and humic monomers (vanillin and caffeic acid). Chemosphere 248:126061. https://doi.org/10.1016/j.chemosphere.2020.126061 Li Z, Stockwell C, Niles J, Minegar S, Hong H (2013) Uptake of sulfadiazine sulfonamide from water by clinoptilolite. Appl Environ Soil Sci 2013:1–8. https://doi.org/10.1155/2013/648697 Liu Y, Liu X, Lu S, Zhao B, Wang Z, Xi B, Guo W (2020) Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: influence of particle diameter and redox potential. Chem Eng J 384:123346. https://doi.org/10.1016/j.cej.2019.123346 Peng ZD, Lin XM, Zhang YL, Hu Z, Yang XJ, Chen CY, Chen HY, Li YT, Wang JJ (2021) Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci Total Environ 772:145355. https://doi.org/10.1016/j.scitotenv.2021.145355 Cheng Y, Xu L, Jiang Z, Liu C, Zhang Q, Zou Y, Chen Y, Li J, Liu X (2021) Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent. Chem Eng J 417:128090. https://doi.org/10.1016/j.cej.2020.128090 Ye C, Lu P, Jiang X, Wu C, Qiu T, Li Y (2020) Synthesis and adsorption behavior of a magnetic ZSM zeolite for the selective removal of p-xylene from complex aqueous media. Chem Eng Process 153:107961. https://doi.org/10.1016/j.cep.2020.107961 Hagio T, Kunishi H, Yamaoka K, Kamimoto Y, Ichino R (2018) Seed-assisted synthesis of magnetic faujasite-type zeolite and its adsorption performance. Nanosci Nanotechnol Lett 10:862–867. https://doi.org/10.1166/nnl.2018.2640 Aono H, Kaji N, Itagaki Y, Johan E, Matsue N (2016) Synthesis of mordenite and its composite material using chemical reagents for Cs decontamination. J Ceram Soc Jpn 124:617–623. https://doi.org/10.2109/jcersj2.15317 Cao J, Chang G, Guo H, Chen J (2013) Synthesis and characterization of magnetic ZSM-5 zeolite. Trans Tianjin Univ 19:326–331. https://doi.org/10.1007/s12209-013-1912-0 Liu H, Peng S, Shu L, Chen T, Bao T, Frost RL (2013) Effect of Fe3O4 addition on removal of ammonium by zeolite NaA. J Colloid Interface Sci 390:204–210. https://doi.org/10.1016/j.jcis.2012.09.010 Liu H, Peng S, Shu L, Chen T, Bao T, Frost RL (2013) Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+. Chemosphere 91:1539–1546. https://doi.org/10.1016/j.chemosphere.2012.12.038 Cao JL, Liu XW, Fu R, Tan ZY (2008) Magnetic P zeolites: synthesis, characterization and the behavior in potassium extraction from seawater. Sep Purif Technol 63:92–100. https://doi.org/10.1016/j.seppur.2008.04.015 Park M, Choi CL, Lim WT, Kim MC, Choi J, Heo NH (2000) Molten-salt method for the synthesis of zeolitic materials. I Micropor Mesopor Mater 37:81–89. https://doi.org/10.1016/S1387-1811(99)00196-1 Inoue T, Itakura M, Jon H, Oumi Y, Takahashi A, Fujitani T, Sano T (2009) Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Micropor Mesopor Mater 122:149–154. https://doi.org/10.1016/j.micromeso.2009.02.027 Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao FS (2012) Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 134:15173–15176. https://doi.org/10.1021/ja3044954 van Tendeloo L, Haouas M, Martens JA, Kirschhock CEA, Breynaert E, Taulelle F (2015) Zeolite synthesis in hydrated silicate ionic liquids. Faraday Discuss 179:437–449. https://doi.org/10.1039/c4fd00234b Petkowicz DI, Canal S, Finger PH, Mignoni ML, dos Santos JHZ (2017) Synthesis of hybrid zeolites using a solvent-free method in the presence of different organosilanes. Micropor Mesopor Mater 241:98–106. https://doi.org/10.1016/j.micromeso.2016.11.030 Xu W, Dong J, Li J, Li J, Wu F (1990) A novel method for the preparation of zeolite ZSM-5. J Chem Soc Chem Commun 10:755–756. https://doi.org/10.1039/C39900000755 Rao PRHP, Matsukata M (1996) Dry-gel conversion technique for synthesis of zeolite BEA. Chem Commun 12:1441–1442. https://doi.org/10.1039/CC9960001441 Weitkamp J, Hunger M (2005) Preparation of zeolites via the dry-gel synthesis method. Stud Surf Sci Catal 155:1–12. https://doi.org/10.1016/S0167-2991(05)80133-8 Goergen S, Saada MA, Soulard M, Rouleau L, Patarin J (2010) Dry gel conversion synthesis of shape controlled MFI type zeolite materials. J Porous Mater 17:635–641. https://doi.org/10.1007/S10934-009-9333-0 Mohammadparast F, Halladj R, Askari S (2018) The synthesis of nano-sized ZSM-5 zeolite by dry gel conversion method and investigating the effects of experimental parameters by Taguchi experimental design. J Exp Nanosci 13:160–173. https://doi.org/10.1080/17458080.2018.1453172 Falyouna O, Eljamal O, Maamoun I, Tahara A, Sugihara Y (2020) Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system. J Colloid Interface Sci 571:66–79. https://doi.org/10.1016/j.jcis.2020.03.028 Piri F, Mollahosseini A, Khadir A, Milani Hosseini MM (2019) Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite–hydroxyapatite nanocomposite. J Environ Chem Eng 7:103338. https://doi.org/10.1016/j.jece.2019.103338 Gaffer A, Al Kahlawy AAA, Aman D (2017) Magnetic zeolite-natural polymer composite for adsorption of chromium (VI). Egypt J Pet 26:995–999. https://doi.org/10.1016/j.ejpe.2016.12.001 Bessa RDA, Costa LDS, Oliveira CP, Bohn F, do Nascimento RF, Sasaki JM, Loiola AR (2017) Kaolin-based magnetic zeolites A and P as water softeners. Micropor Mesopor Mater 245:64–72. https://doi.org/10.1016/j.micromeso.2017.03.004 Phouthavong V, Hiraiwa M, Hagio T, Nijpanich S, Chounlamany V, Nishihama T, Kamimoto Y, Ichino R (2020) Magnetic BEA-type zeolites: preparation by dry-gel conversion method and assessment of dye removal performance. J Mater Cycles Waste Manag 22:375–382. https://doi.org/10.1007/s10163-020-00994-8 Alipour SM, Halladj R, Askari S (2014) Effects of the different synthetic parameters on the crystallinity and crystal size of nanosized ZSM-5 zeolite. Rev Chem Eng 30:289–322. https://doi.org/10.1515/revce-2014-0008 Chen YH, Han DM, Cui HX, Zhang Q (2019) Synthesis of ZSM-5 via organotemplate-free and dry gel conversion method: investigating the effects of experimental parameters. J Solid State Chem 279:120969. https://doi.org/10.1016/j.jssc.2019.120969 Karimi R, Bayati B, Charchi Aghdam NC, Ejtemaee M, Babaluo AA (2012) Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent. Powder Technol 229:229–236. https://doi.org/10.1016/j.powtec.2012.06.037 Modhera B, Chakraborty M, Parikh PA, Jasra RV (2009) Synthesis of nano-crystalline zeolite β: effects of crystallization parameters. Cryst Res Technol 44:379–385. https://doi.org/10.1002/crat.200800474 do Nascimento AR, de Figueredo GP, Silva EMF, de Melo MAF, de Melo DMA, de Souza MJB (2017) Synthesis, optimization and characterization of zeolite beta (BEA): Production of ZSM-5 and NaAlSiO4 as secondary phases. Rev Virtual Quím 9:1570–1582. https://doi.org/10.21577/1984-6835.20170092 Nakai M, Miyake K, Inoue R, Ono K, Al Jabri HA, Hirota Y, Uchida Y, Miyamoto M, Nishiyama N (2019) Synthesis of high silica *BEA type ferrisilicate (Fe-Beta) by dry gel conversion method using dealuminated zeolites and its catalytic performance on acetone to olefins (ATO) reaction. Micropor Mesopor Mater 273:189–195. https://doi.org/10.1016/j.micromeso.2018.06.008 Huang Z, Su JF, Guo YH, Su XQ, Teng LJ (2009) Synthesis of well-crystallized zeolite beta at large scale and its incorporation into polysulfone matrix for gas separation. Chem Eng Commun 196:969–986. https://doi.org/10.1080/00986440902797824 Li YS, Church JS, Woodhead AL (2012) Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater 324:1543–1550. https://doi.org/10.1016/j.jmmm.2011.11.065 Alnajrani MN, Alsager OA (2020) Removal of antibiotics from water by polymer of intrinsic microporosity: isotherms, kinetics, thermodynamics, and adsorption mechanism. Sci Rep 10:794. https://doi.org/10.1038/s41598-020-57616-4 Liu X, Liu Y, Lu S, Guo W, Xi B (2018) Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem Eng J 350:131–147. https://doi.org/10.1016/j.cej.2018.05.141 Zuo X, Qian C, Ma S, Xiong J, He J, Chen Z (2019) Removal of sulfonamide antibiotics from water by high-silica ZSM-5. Water Sci Technol 80:507–516. https://doi.org/10.2166/wst.2019.294 Fukahori S, Fujiwara T, Ito R, Funamizu N (2011) pH-dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalination 275:237–242. https://doi.org/10.1016/j.desal.2011.03.006 Doekhi-Bennani Y, Leilabady NM, Fu M, Rietveld LC, van der Hoek JP, Heijman SGJ (2021) Simultaneous removal of ammonium ions and sulfamethoxazole by ozone regenerated high silica zeolites. Water Res 188:116472. https://doi.org/10.1016/j.watres.2020.116472 Yang W, Wang X, Tang Y, Wang Y, Ke C, Fu C (2002) Layer-by-layer assembly of nanozeolite based on polymeric microsphere: zeolite coated sphere and hollow zeolite sphere. J Macromol Sci Pure Appl Chem 39:509–526. https://doi.org/10.1081/MA-120004244 Sannino F, Pansini M, Marocco A, Cinquegrana A, Esposito S, Tammaro O, Barrera G, Tiberto P, Allia P, Pirozzi D (2022) Removal of sulfanilamide by tailor-made magnetic metal-ceramic nanocomposite adsorbents. J Environ Manag 310:114701. https://doi.org/10.1016/j.jenvman.2022.114701 Braschi I, Gatti G, Paul G, Gessa CE, Cossi M, Marchese L (2010) Sulfonamide antibiotics embedded in high silica zeolite Y: a combined experimental and theoretical study of host-guest and guest-guest interactions. Langmuir 26:9524–9532. https://doi.org/10.1021/la9049132 Le Page G, Gunnarasson L, Snape J, Tyler CR, Cossi M (2017) Integrating human and environmental health in antibiotic risk assessment: a critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environ Int 109:155–169. https://doi.org/10.1016/j.envint.2017.09.013 Hitachi (2022) Flocculation and magnetic separation system. https://www.hitachi.com/businesses/infrastructure/product_site/water_environment/fms/index.html