Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

Springer Science and Business Media LLC - Tập 4 - Trang 297-311 - 2002
Patrick T. Spicer1, William B. Small1, Matthew L. Lynch2, Janet L. Burns2
1The Procter & Gamble Company, Corporate Engineering, West Chester, USA
2The Procter & Gamble Company, Corporate Research, Ross, USA

Tóm tắt

Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol–dextran–monoolein–water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

Từ khóa


Tài liệu tham khảo

Almgren M., K. Edwards & G. Karlsson, 2000. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf. A 174, 3-21.

Anderson D.M., 1999. Coated particles for delivery or uptake of materials. Select Release, USA Patent App., WO 9912640 A1 19990318.

Anderson D.M. & H. Wennerström, 1990. Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions. J. Phys. Chem. 94, 8683-8694.

Andersson S., M. Jacob, S. Lidin & K. Larsson, 1995. Structure of the cubosome-a closed lipid bilayer aggregate. Z. Kristallogr. 210, 315-318.

Bellare J.R., H.T. Davis, L.E. Scriven & Y. Talmon, 1988. Controlled environment vitrification system. J. Electron Microsc. Tech. 10, 87-111.

Briggs J., H. Chung & M. Caffrey, 1996. The temperaturecomposition phase diagram and mesophase structure characterization of the monoolein/water system. J. Phys. II France 6, 723-751.

Czarnecki R.F. & D.L. Williams, 1993. Sustained released delivery system for use in the periodontal pocket. Copley Pharmaceutical Inc., USA Patent 5,230,895.

Drummond C.J. & C. Fong, 2000. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Op. Colloid Interface Sci. 4, 449-456.

Eliasson A.-C., 1993. Interactions between components. In: Eliasson A.-C. & Larsson K. eds. Cereals in Breadmaking: A Molecular Colloidal Approach. Marcel Dekker, Inc., New York, p. 161.

Engstrom S., B. Lindman & K. Larsson, 1992. Method of preparing controlled-release preparations for biologically active materials and resulting compositions. Fluid-Carbon International AB, USA Patent 5,151,272.

Fontell K., L. Mandell & P. Ekwall, 1968. Isotropic mesophases in systems containing amphiphilic compounds. Acta Chem. Scand. 22, 3209-3223.

Freitas C. & R.H. Müller, 1998. Spray-drying of solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm. 46, 145-151.

Gustafsson J., H. Ljusberg-Wahren, M. Almgren & K. Larsson, 1996. Cubic lipid-water phase dispersed into submicron particles. Langmuir 12, 4611-4613.

Gustafsson J., H. Ljusberg-Wahren, M. Almgren & K. Larsson, 1997. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 13, 6964-6971.

Hyde S.T., S. Andersson, B. Ericsson & K. Larsson, 1984. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerolmonooleat-water system. Z. Kristallographie 168, 213-219.

Hyde S., A. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin & B.W. Ninham, 1997. The Language of Shape. Elsevier, New York.

Ivanova R., B. Lindman & P. Alexandridis, 2000. Effect of glycols on the self-assembly of amphiphilic block copolymers inwater. 1. Phase diagrams and structure identification. Langmuir 16, 3660-2675.

Jacob M. & S. Andersson, 1998. The Nature of Mathematics and the Mathematics of Nature. Elsevier, Amsterdam, the Netherlands.

Jones J.L. & T.C.B. McLeish, 1999. Concentration fluctuations in surfactant cubic phases: theory, rheology, and light scattering, Langmuir 15, 7495-7503.

Jösson B., B. Lindman, K. Holmberg & B. Kronberg, 1998. Surfactants and Polymers in Aqueous Solution. John Wiley and Sons, New York.

Kabalnov A., U. Olsson & H. Wennerstrom, 1994. Polymer effects on the phase equilibrium of a balanced microemulsion. Langmuir 10, 2159-2169.

Kim J.S., H.K. Kim, H. Chung, Y.Y. Sohn, I.C. Kwon & S.Y. Jeong, 2000. Drug formulations that form a dispersed cubic phase when mixed withwater. Proc. Int'l. Symp. Control. Rel. Bioact. Mater. 27, 1118-1119.

Landh T., 1994. Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20C. J. Phys. Chem. 98, 8453-8467.

Landh T. & K. Larsson K. 1993. Particles, method of preparing said particles and uses thereof. GS Biochem AB, USA Patent 5,531,925.

Lapasin R. & S. Pricl, 1995. Rheology of Industrial Polysaccharides-Theory and Applications. Blackie Academic and Professional, UK.

Larsson K., 1983. Two cubic phases in monoolein-water system. Nature 304, 664.

Laughlin R.G., 1994. The Aqueous Phase Behavior of Surfactants, 1st edn; Academic Press, San Diego.

Lee S.-W., M.-H. Kim & C.-K. Kim, 1999. Encapsulation of ethanol by spray-drying technique: effects of sodium lauryl sulfate. Int. J. Pharm. 187, 193-198.

Lindstrom M., H. Ljusberg-Wahren, K. Larsson & B. Borgstrom, 1981. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16, 749-754.

Ljusberg-Wahren H., L. Nyberg & K. Larsson, 1996. Dispersion of the cubic liquid crystalline phase-structure, preparation and functionality aspects. Chimica Oggi 14, 40-43.

Lutton E.S., 1965. Phase behavior of aqueous systems of monoglycerides. J. Amer. Oil Chem. Soc. 42, 1068-1070.

Luzzati V., A. Tardieu, T. Gulik-Krzywicki, E. Rivas & F. Reiss-Husson, 1968. Structure of the cubic phases of lipidwater systems. Nature 220, 485-488.

Mackay A.L., 1985. Periodic minimal surfaces. Nature 314, 604-606.

Neuchl C. & A. Mersmann, 1995. Fractionation of polydisperse dextran using ethanol. Chem. Eng. Sci. 50, 951-958.

Nielsen L., L. Schubert & J. Hansen, 1998. Bioadhesive drug delivery systems 1. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Euro. J. Pharm. Sci. 6, 231-239.

Patton J.S. & M.C. Carey, 1979. Watching fat digestion. Science 204, 145-148.

Pearson J.T. & J.M. Smith, 1974. The effect of hydrotropic salts on the stability of liquid crystalline systems. J. Pharm. Pharmac. 26, 123-124.

Qiu H. & M. Caffrey, 2000. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223-234.

Rosevear F.B., 1968. Liquid crystals: the mesomorphic phases of surfactant compositions. J. Soc. Cosm. Chem. 19, 581-594.

von Schnering H.G. & R. Nesper, 1991. Nodal surfaces of fourier series: fundamental invariants of structured matter. Z. Physik B 83, 407-412.

Scriven L.E., 1976. Equilibrium bicontinuous structure. Nature 263, 123-125.

Spicer P.T., K.L. Hayden, M.L. Lynch, A. Ofori-Boateng & J.L. Burns, 2001. A novel process for producing cubic liquid crystalline nanoparticles (Cubosomes). Langmuir 17, 5748-5756.

Szoka F.C., A. Rolland & J. Wang, 1998. Dry powder formulations of polynucleotide complexes for inhalation delivery to the respiratory tract. US Patent # 5,811,406.

Trubiano P.C., 1986. Succinate and substituted succinate derivatives of starch. In: Wurzburg O.B. ed. Modified Starches: Properties and Uses. CRC Press, Boca Raton, FL.

Vereyken I.J., V. Chupin, R.A. Demel, S.C.M. Smeekens & B.D. Kruijff, 2001. Fructans insert between the headgroups of phospholipids. Biochimica et Biophysica Acta 1510, 307-320.