Drug repurposing approach to fight COVID-19

Thakur Uttam Singh1, Subhashree Parida1, Madhu Cholenahalli Lingaraju1, Manickam Kesavan1, Dinesh Kumar1, Raj Kumar Singh2
1Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
2Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Huang F, Zhang C, Liu Q, Zhao Y, Zhang Y, Qin Y, et al. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog. 2020;16(3):e1008341. https://doi.org/10.1371/journal.ppat.1008341.

Scherman D, Fetro C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie. 2020;75:161–7. https://doi.org/10.1016/j.therap.2020.02.007.

Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58:4885–933. https://doi.org/10.1128/AAC.03036-14.

Sertkaya A, Birkenbach A, Berlind A, Eyraud J. Examination of clinical trial costs and barriers for drug development. US Department of Health and Human Services, office of the assistant secretary for planning and evaluation report. 2014;1:1–92.

Yeu Y, Yoon Y, Park S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol Biosyst. 2015;11:2096–102. https://doi.org/10.1039/c5mb00306g.

Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8:186–21010. https://doi.org/10.1002/wsbm.1337.

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019 Jan;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nat Biotechnol. 2006;24:805–15. https://doi.org/10.1038/nbt1228.

Koch U, Hamacher M, Nussbaumer P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim Biophys Acta. 2014;1844:156–61. https://doi.org/10.1016/j.bbapap.2013.05.010.

Piro RM. Network medicine: linking disorders. Hum Genet. 2012;131:1811–20. https://doi.org/10.1007/s00439-012-1206-y.

Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. https://doi.org/10.1038/s41421-020-0153-3.

Li X, Yu J, Zhang Z, Ren J, Peluffo AE, Zhang W, et al.Network bioinformatics analysis provides insight into drug repurposing for COVID-2019. Preprints 2020, 2020030286 (doi: 10.20944/preprints202003.0286.v1.

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613–20. https://doi.org/10.1038/s41423-020-0400-4.

Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–93. https://doi.org/10.1038/cr.2013.92.

Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–36. https://doi.org/10.1038/nrmicro2090.

Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47. https://doi.org/10.1038/nrd.2015.37.

Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol. 2020;38(4):379–81. https://doi.org/10.1038/d41587-020-00003-1.

Woodhead M, Ewig S, Torres A. Severe acute respiratory syndrome (SARS). Eur Respir J. 2003;21:739–40. https://doi.org/10.1183/09031936.03.00035403.

Zaki AM, Boheemena S, Bestebroer TIM, Osterhaus A, Fouchier R. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20. https://doi.org/10.1056/NEJMoa1211721.

Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2:1804–20. https://doi.org/10.3390/v2081803.

Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol. 2010;2010(84):11336–49. https://doi.org/10.1128/JVI.00650-10.

LeDuc JW, Barry MA. SARS, the first pandemic of the 21st century. Emerg Infect Dis. 2004;10:e26. https://doi.org/10.3201/eid1011.040797_02.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3. https://doi.org/10.1038/s41586-020-2012-7.

Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92:455–9. https://doi.org/10.1002/jmv.25688.

Shield C. Coronavirus: From bats to pangolins, how do viruses reach us?. Deutsche Welle. 7 February 2020. Retrieved 13 March 2020.

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–44. https://doi.org/10.1038/s41564-020-0695-z.

Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19? Int J Antimicrob Agents. 2020:105944. doi: 10.1016/j.ijantimicag.2020.105944.

Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):E254. https://doi.org/10.3390/v12030254.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71. https://doi.org/10.1038/s41422-020-0282-0.

de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 2020;117(12):6771–6. https://doi.org/10.1073/pnas.1922083117.

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9:eaal3653. https://doi.org/10.1126/scitranslmed.aal3653.

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–36. https://doi.org/10.1056/NEJMoa2001191.

Nicastri E, Petrosillo N, Bartoli TA, Lepore L, Mondi A, Palmieri F, et al. National Institute for the infectious diseases "L. Spallanzani", IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020;12:8543.

Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382:2327–36. https://doi.org/10.1056/NEJMoa2007016.

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19-preliminary report. N Engl J Med. 2020;NEJMoa2007764. doi: 10.1056/NEJMoa2007764.

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–78. https://doi.org/10.1016/S0140-6736(20)31022-9.Erratum.In:Lancet.2020;395:1694.d.

Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020 May 27. https://doi.org/10.1056/NEJMoa2015301.

Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773–9. https://doi.org/10.1074/jbc.AC120.013056.

Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9(2):e00221–18. doi: 10.1128/mBio.00221–18.

Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5. https://doi.org/10.1038/nature17180.

Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14:58–60. https://doi.org/10.5582/ddt.2020.01012.

Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res. 2014;105:17–211. https://doi.org/10.1016/j.antiviral.2014.02.014.

Jordan PC, Stevens SK, Deval J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother. 2018;26:2040206618764483. https://doi.org/10.1177/2040206618764483.

Pires de Mello CP, Tao X, Kim TH, Vicchiarelli M, Bulitta JB, Kaushik A, et al. Clinical regimens of favipiravir inhibit zika virus replication in the hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62:e00967–18. doi: 10.1128/AAC.00967-18.

Nguyen TH, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet AM, et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017;11:e0005389. https://doi.org/10.1371/journal.pntd.0005389.

Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. 2020. https://doi.org/10.1002/cpt.1844.

Gowen BB, Sefing EJ, Westover JB, Smee DF, Hagloch J, Furuta Y, et al. Alterations in favipiravir (T-705) pharmacokinetics and biodistribution in a hamster model of viral hemorrhagic fever. Antiviral Res. 2015;121:132–7. https://doi.org/10.1016/j.antiviral.2015.07.003.

Mendenhall M, Russell A, Smee DF, Hall JO, Skirpstunas R, Furuta Y, et al. Effective oral favipiravir (t-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic fever. PLoS Negl Trop Dis. 2011;5:e1342. https://doi.org/10.1371/journal.pntd.0001342.

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61. https://doi.org/10.1096/fj.07-9574LSF.

Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–6. https://doi.org/10.1136/thorax.2003.012658.

Falzarano D, De Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nat Med. 2013;19:1313–7. https://doi.org/10.1038/nm.3362.

Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol. 2006;16:37–48. https://doi.org/10.1002/rmv.483.

Preston SL, Drusano GL, Glue P, Nash J, Gupta SK, McNamara P. Pharmacokinetics and absolute bioavailability of ribavirin in healthy volunteers as determined by stable-isotope methodology. Antimicrob Agents Chemother. 1999;43:2451–6.

Loustaud-Ratti V, Stanke-Labesque F, Marquet P, Gagnieu MC, Maynard M, Babany G, et al. Optimizing ribavirin dosage: a new challenge to improve treatment efficacy in genotype 1 hepatitis C patients. Gastroenterol Clin Biol. 2009;33:580–3. https://doi.org/10.1016/j.gcb.2009.04.009.

Molina-Cuadrado E, Mateo-Carrrasco H, Collado A, Casado MM. Anaemia predictors in patients with chronic hepatitis C treated with ribavirin and direct-acting antiviral agents. Eur J Hosp Pharm. 2018;25:132–7. https://doi.org/10.1136/ejhpharm-2017-001277.

Russmann S, Grattagliano I, Portincasa P, Palmieri VO, Palasciano G. Ribavirin-induced anemia: mechanisms, risk factors and related targets for future research. Curr Med Chem. 2006;13:3351–7. https://doi.org/10.2174/092986706778773059.

Naik GS, Tyagi MG. A pharmacological profile of ribavirin and monitoring of its plasma concentration in chronic hepatitis C infection. J Clin Exp Hepatol. 2012;2:42–544. https://doi.org/10.1016/S0973-6883(12)60090-5.

Morello J, Rodríguez-Novoa S, Jiménez-Nácher I, Soriano V. Usefulness of monitoring ribavirin plasma concentrations to improve treatment response in patients with chronic hepatitis C. J Antimicrob Chemother. 2008;62:1174–80. https://doi.org/10.1093/jac/dkn421.

Chen YK, Huang YQ, Tang SQ, Xu XL, Zeng YM, He XQ et al. Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus pneumonia: results of a randomized, open-labeled prospective study (4/14/2020). SSRN: https://ssrn.com/abstract=3576905 or https://doi.org/10.2139/ssrn.3576905.

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Version 2. Acta Pharm Sin B. 2020;10:766–88. https://doi.org/10.1016/j.apsb.2020.02.008.

Chen YW, Yiu CB, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020;9:129. doi: 10.12688/f1000research.22457.2.

Savarino A. Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol. 2005;34:170–8. https://doi.org/10.1016/j.jcv.2005.03.005.

Ngo ST, Quynh Anh Pham N, Le Thi L, Pham DH, Vu VV. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model. 2020. https://doi.org/10.1021/acs.jcim.0c00491.

Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64:e00399–e420. https://doi.org/10.1128/AAC.00399-20.

Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag. 2008;4:1023–33. https://doi.org/10.2147/tcrm.s3285.

Ortega JT, Serrano ML, Pujol FH, Rangel HR. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: the main protease as molecular target. EXCLI J. 2020;19:400–9. https://doi.org/10.17179/excli2020-1189.

Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, LeeWJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatmentof COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020;35:e79. doi: 10.3346/jkms.2020.35.e79.

Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 21;49:0.

Han W, Quan B, Guo Y, Zhang J, Lu Y, Feng G, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. J Med Virol. 2020;92:461–3. https://doi.org/10.1002/jmv.25711.

Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20:689–96. https://doi.org/10.1016/S1473-3099(20)30198-5.

Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol Inform. 2020. https://doi.org/10.1002/minf.202000028.

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–99. https://doi.org/10.1056/NEJMoa2001282.

Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020;14:64–8. https://doi.org/10.5582/bst.2020.01030.

Neuman MG, Schneider M, Nanau RM, Parry C. HIV-antiretroviral therapy induced liver, gastrointestinal, and pancreatic injury. Int J Hepatol. 2012;2012:760706. https://doi.org/10.1155/2012/760706.

Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63:769–802. https://doi.org/10.2165/00003495-200363080-00004.

Bongiovanni M, Cicconi P, Landonio S, Meraviglia P, Testa L, Di Biagio A, et al. Predictive factors of lopinavir/ritonavir discontinuation for drug-related toxicity: results from a cohort of 416 multi-experienced HIV-infected individuals. Int J Antimicrob Agents. 2005;26:88–91. https://doi.org/10.1016/j.ijantimicag.2005.03.003.

Robbins BL, Capparelli EV, Chadwick EG, Yogev R, Serchuck L, Worrell C, et al. Pharmacokinetics of high-dose lopinavir-ritonavir with and without saquinavir or nonnucleoside reverse transcriptase inhibitors in human immunodeficiency virus-infected pediatric and adolescent patients previously treated with protease inhibitors. Antimicrob Agents Chemother. 2008;52:3276–83. https://doi.org/10.1128/AAC.00224-08.

Canta F, Marrone R, Bonora S, D'Avolio A, Sciandra M, Sinicco A, et al. Pharmacokinetics and hepatotoxicity of lopinavir/ritonavir in non-cirrhotic HIV and hepatitis C virus (HCV) co-infected patients. J Antimicrob Chemother. 2005;55:280–1. https://doi.org/10.1093/jac/dkh516.

Sulkowski MS, Thomas DL, Chaisson RE, Moore RD. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA. 2000;283:74–80. https://doi.org/10.1001/jama.283.1.74.

Tu Y, Poblete RJ, Freilich BD, Zarbin MA, Bhagat N. Retinal toxicity with ritonavir. Int J Ophthalmol. 2016;9:640–2. https://doi.org/10.18240/ijo.2016.04.29.

Pasquau Liaño J, Hidalgo TC. Chemical characteristics, mechanism of action and antiviral activity of darunavir. Enferm Infecc Microbiol Clin. 2008;26:3–9. https://doi.org/10.1016/s0213-005x(08)76547-9.

Khan SA, Zia K, Ashraf S, Uddin R, Ul-Haq Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. J Biomol Struct Dyn. 2020:1–10. doi: 10.1080/07391102.2020.1751298.

Rittweger M, Arastéh K. Clinical pharmacokinetics of darunavir. Clin Pharmacokinet. 2007;46:739–56. https://doi.org/10.2165/00003088-200746090-00002.

Back D, Sekar V, Hoetelmans RM. Darunavir: pharmacokinetics and drug interactions. Antivir Ther. 2008;13:1–13.

Triant VA, Siedner MJ. Darunavir and cardiovascular risk: evaluating the data to inform clinical care. J Infect Dis. 2020;221:498–500. https://doi.org/10.1093/infdis/jiz482.

Xie S, Chen XX, Qiao S, Li R, Sun Y, Xia S, et al. Identification of the RNA pseudoknot within the 3' end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J Virol. 2018;92:e00097–e118. https://doi.org/10.1128/JVI.00097-18.

Li J, Lehmann C, Chen X, Romerio F, Lu W. Total chemical synthesis of human interferon alpha-2b via native chemical ligation. J Pept Sci. 2015;21:554–60. https://doi.org/10.1002/psc.2760.

Thomas H, Foster G, Platis D. Mechanisms of action of interferon and nucleoside analogues. J Hepatol. 2003;39:S93–S9898. https://doi.org/10.1016/s0168-8278(03)00207-1.

Wang HQ, Ma LL, Jiang JD, Pang R, Chen YJ, Li YH. Recombinant human interferon alpha 2b broad-spectrum anti-respiratory viruses pharmacodynamics study in vitro. Yao Xue Xue Bao. 2014;49(11):1547–53.

Yu DX, Chen Q, Zhang LL, Liu Y, Yu ZA, Li ZF, et al. A field trial of recombinant human interferon alpha-2b for nasal spray to prevent SARS and other respiratory viral infections. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2005;19:216–9.

Falzarano D, De Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep. 2013;3:1686. https://doi.org/10.1038/srep01686.

Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, Al Qasim E, et al. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: a multicenter observational study. Clin Infect Dis. 2020;70(9):1837–44. https://doi.org/10.1093/cid/ciz544.

Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14:69–71. https://doi.org/10.5582/bst.2020.01020.

Shen KL, Yang YH. Diagnosis and treatment of, novel coronavirus infection in children: a pressing issue. World J Pediatr. 2019;2020:1–3. https://doi.org/10.1007/s12519-020-00344-6.

Foster GR. Review article: pegylated interferons: chemical and clinical differences. Aliment Pharmacol Ther. 2004;20(8):825–30. https://doi.org/10.1111/j.1365-2036.2004.02170.x.96.

Russo MW, Fried MW. Side effects of therapy for chronic hepatitis C. Gastroenterology. 2003;124(6):1711–9. https://doi.org/10.1016/s0016-5085(03)00394-9.

Zheng L, Li MP, Gou ZP, Wang Y, Xu N, Cai YM, et al. A pharmacokinetic and pharmacodynamic comparison of a novel pegylated recombinant consensus interferon-α variant with peginterferon-α-2a in healthy subjects. Br J Clin Pharmacol. 2015;79(4):650–9. https://doi.org/10.1111/bcp.12528.

Mainali NR, Bhatt VR, Kedia S, Krishnamurthy J, Wake LM, Akhtari M. Reversible bone marrow aplasia induced by pegylated interferon-α-2a therapy in a patient with primary myelofibrosis. J Oncol Pharm Pract. 2014;20(5):386–92. https://doi.org/10.1177/1078155213504444.

Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs. 2005;19:105–23. https://doi.org/10.2165/00023210-200519020-00002.

Arabi YM, Alothman A, Balkhy HH, Al-Dawood A, AlJohani S, Al Harbi S, et al. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials. 2018;19:81. https://doi.org/10.1186/s13063-017-2427-0.

Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212:1904–13. https://doi.org/10.1093/infdis/jiv392.

Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395:1695–704. https://doi.org/10.1016/S0140-6736(20)31042-4.

Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–33. https://doi.org/10.3390/v4061011.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052.

Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938. https://doi.org/10.1016/j.ijantimicag.2020.105938.

Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293. https://doi.org/10.1002/prp2.293.

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. https://doi.org/10.1186/1743-422X-2-69.

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. https://doi.org/10.1038/s41421-020-0156-0.

Mackenzie AH. Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials. Am J Med. 1983;75:40–5. https://doi.org/10.1016/0002-9343(83)91269-x.

Laaksonen AL, Koskiahde V, Juva K. Dosage of antimalarial drugs for children with juvenile rheumatoid arthritis and systemic lupus erythematosus. A clinical study with determination of serum concentrations of chloroquine and hydroxychloroquine. Scand J Rheumatol. 1974;3:103–8. https://doi.org/10.3109/03009747409115809.

Weniger H, World Health Organization. Review of side effects and toxicity of chloroquine (No. WHO/MAL/79.906). 1979. Geneva: World health Organization.

McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med. 1983;75:11–8. https://doi.org/10.1016/0002-9343(83)91265-2.

Popert AJ. Chloroquine: a review. Rheumatol Rehabil. 1976;15:235–8. https://doi.org/10.1093/rheumatology/15.3.235.

Alving AS, Eichelberger L, Craige B, Jones R, Whorton CM, Pullman TN. Studies on the chronic toxicity of chloroquine. J Clin Invest. 1948;27:60–5. https://doi.org/10.1172/JCI101974.

Looareesuwan S, White NJ, Chanthavanich P, Edwards G, Nicholl DD, Bunch C, et al. Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. Br J Pharmacol. 1986;22:31–6. https://doi.org/10.1111/j.1365-2125.1986.tb02876.x.

Stokkermans TJ, Trichonas G. Chloroquine and hydroxychloroquine toxicity. [Updated 2019 Jun 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK537086/.

Yusuf IH, Sharma S, Luqmani R, Downes SM. Hydroxychloroquine retinopathy. Eye (Lond). 2017;31:828–45. https://doi.org/10.1038/eye.2016.298.

Falcone PM, Paolini L, Lou PL. Hydroxychloroquine toxicity despite normal dose therapy. Ann Ophthalmol. 1993;25:385–8.

Furst DE. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus. 1996;5:11–5. https://doi.org/10.1177/0961203396005001041.

Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet. 1996;31(4):257–74. https://doi.org/10.2165/00003088-199631040-00003.

Lim HS, Im JS, Cho JY, Bae KS, Klein TA, Yeom JS, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother. 2009;53:1468–75. https://doi.org/10.1128/AAC.00339-08.

Browning DJ. Pharmacology of Chloroquine and Hydroxychloroquine. Hydroxychloroquine Chloroquine Retinopathy. 2014;4:35–633. https://doi.org/10.1007/978-1-4939-0597-3_2.

Melles RB, Marmor MF. Pericentral retinopathy and racial differences in hydroxychloroquine toxicity. Ophthalmology. 2015;122:110–6. https://doi.org/10.1016/j.ophtha.2014.07.018.

Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Version 2. Cell Discov. 2020;6:28. https://doi.org/10.1038/s41421-020-0169-8.

Leneva IA, Fediakina IT, Gus'kova TA, Glushkov RG. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Ter Arkh. 2005;77:84–8.

Shi L, Xiong H, He J, Deng H, Li Q, Zhong Q, et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch Virol. 2007;152:1447–555. https://doi.org/10.1007/s00705-007-0974-5.

Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res. 2014;107:84–94. https://doi.org/10.1016/j.antiviral.2014.04.006.

Khamitov RA, Loginova S, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol. 2008;53(4):9–13.

Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Fut Virol. 2011;6(5):615–31. https://doi.org/10.2217/fvl.11.33.

Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease, in Wuhan, China. Clin Infect Dis. 2019;2020:272. https://doi.org/10.1093/cid/ciaa272.

Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 2020;44:e40. https://doi.org/10.26633/RPSP.2020.40.

Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: a retrospective cohort study. J Infect. 2020;81:e1–e5. https://doi.org/10.1016/j.jinf.2020.03.002.

Titova ON, Petrova MA, Shklyarevich NA, Kuzubova NA, Aleksandrov AL, Kovaleva LF, et al. Efficacy of Arbidol in the prevention of virus-induced exacerbations of bronchial asthma and chronic obstructive pulmonary disease. Ter Arkh. 2018;90(8):48–52. https://doi.org/10.26442/terarkh201890848-52.

Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv. https://www.medrxiv.org. doi: https://doi.org/10.1101/2020.03.19.20038984.

Deng P, Zhong D, Yu K, Zhang Y, Wang T, Chen X. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013;57:1743–55. https://doi.org/10.1128/AAC.02282-12.

Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. mBio. 2020;11:e00398-20. https://doi.org/10.1128/mBio.00398–20.

Wösten-van Asperen RM, Bos AP, Bem RA, Dierdorp BS, Dekker T, van Goor H, et al. Imbalance between pulmonary angiotensin- converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr Crit Care Med. 2013;2013(14):e438–e441441. https://doi.org/10.1097/PCC.0b013e3182a55735.

Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382:1653–9. https://doi.org/10.1056/NEJMsr2005760.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus fromWuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020;94:e00127–e220. https://doi.org/10.1128/JVI.00127-20.

Steinberg BE, Goldenberg NM, Lee WL. Do viral infections mimic bacterial sepsis? The role of microvascular permeability: a review of mechanisms and methods. Antiviral Res. 2012;93:2–15. https://doi.org/10.1016/j.antiviral.2011.10.019.

Marin GH. Facts and reflections on COVID-19 and anti-hypertensives drugs. Drug Discov Ther. 2020;14:105–6. https://doi.org/10.5582/ddt.2020.01017.

Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:219–22. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.016.

Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020;9:757–60. https://doi.org/10.1080/22221751.2020.1746200.

Peng YD, Meng K, Guan HQ, Leng L, Zhu RR, Wang BY, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E004. https://doi.org/10.3760/cma.j.cn112148-20200220-00105.

D'Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone F, et al. COVID-19 and RAS: unravelling an unclear relationship. Int J Mol Sci. 2020;21:3003. https://doi.org/10.3390/ijms21083003.

Peyriere H, Eiden C, Macia JC, Reynes J. Antihypertensive drugs in patients treated with antiretrovirals. Ann Pharmacother. 2012;46:703–9. https://doi.org/10.1345/aph.1Q546.

Foy M, Sperati CJ, Lucas GM, Estrella MM. Drug interactions and antiretroviral drug monitoring. Curr HIV/AIDS Rep. 2014;11:212–22. https://doi.org/10.1007/s11904-014-0212-1.

Barreras A, Gurk-Turner C. Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent). 2003;16:123–6. https://doi.org/10.1080/08998280.2003.11927893.

Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens. 2000;14:S73–86. https://doi.org/10.1038/sj.jhh.1000991.

Domenic A. Sica, Pharmacology and clinical efficacy of angiotensin receptor blockers. Am J Hypertens. 2001;14:242–7. https://doi.org/10.1016/S0895-7061(01)02134-3.

Phadke M, Saunik S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev Res. 2020. https://doi.org/10.1002/ddr.21666.10.1002/ddr.21666.

Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochem Pharmacol. 2015;93:343–51. https://doi.org/10.1016/j.bcp.2014.11.013.

Ferrario CM. ACE 2: more of Ang 1–7 or less Ang II? Curr Opin Nephrol Hypertens. 2011;20:1–6. https://doi.org/10.1097/MNH.0b013e3283406f57.

Fedson DS (2016) Treating the host response to emerging virus diseases:lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med. 4:421. https://doi.org/10.21037/atm.2016.11.03.

Wösten-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol. 2011;225:618–27. https://doi.org/10.1002/path.2987.

Yuan S (2015) Statins may decrease the fatality rate of Middle East respiratory syndrome infection. mBio. 6:e01120-15. doi: 10.1128/mBio.01120-15.

Totura AL, Baric RS. Reply to “statins may decrease the fatality rate of MERS infection”. mBio. 2015;6:e01303-15. doi: 10.1128/mBio.01303-15.

Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19:117–25. https://doi.org/10.1111/j.1472-8206.2004.00299.x.

Bełtowski J, Wójcicka G, Jamroz-Wiśniewska A. Adverse effects of statins-mechanisms and consequences. Curr Drug Saf. 2009;4:209–28. https://doi.org/10.2174/157488609789006949.

Mancini GB, Baker S, Bergeron J, Fitchett D, Frohlich J, Genest J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: canadian consensus working group update. Can J Cardiol. 2016;32:S35–65. https://doi.org/10.1016/j.cjca.2016.01.003.

Burger D, Back D, Buggisch P, Buti M, Craxí A, Foster G, et al. Clinical management of drug-drug interactions in HCV therapy: challenges and solutions. J Hepatol. 2013;58:792–800. https://doi.org/10.1016/j.jhep.2012.10.027.

Chauvin B, Drouot S, Barrail-Tran A, Taburet AM. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin Pharmacokinet. 2013;52:815–31. https://doi.org/10.1007/s40262-013-0075-4.

Sheppard M, Laskou F, Stapleton PP, Hadavi S, Dasgupta B. Tocilizumab (Actemra). Hum Vaccin Immunother. 2017;13:1972–88. https://doi.org/10.1080/21645515.2017.1316909.

Bersanelli M. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors. Immunotherapy. 2020;12:269–73. https://doi.org/10.2217/imt-2020-0067.

Zhang X, Song K, Tong F, Fei M, Guo H, Lu Z, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4:1307–10. https://doi.org/10.1182/bloodadvances.2020001907.

Ferrey AJ, Choi G, Hanna RM, Chang Y, Tantisattamo E, Ivaturi K, et al. Case of novel coronavirus disease 19 in a chronic hemodialysis patient presenting with gastroenteritis and developing severe pulmonary disease. Am J Nephrol. 2020;28:1–6. https://doi.org/10.1159/000507417.

Mihai C, Dobrota R, Schröder M, Garaiman A, Jordan S, Becker MO, et al. COVID-19 in a patient with systemic sclerosis treated with tocilizumab for SSc-ILD. Ann Rheum Dis. 2020;79:668–9. https://doi.org/10.1136/annrheumdis-2020-217442.

Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report. Ann Oncol. 2020;31:961–4. https://doi.org/10.1016/j.annonc.2020.03.300.

Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117:10970–5. https://doi.org/10.1073/pnas.2005615117.

Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19:102568. https://doi.org/10.1016/j.autrev.2020.102568.

Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92:814–8. https://doi.org/10.1002/jmv.25801.

Abdallah H, Hsu JC, Lu P, Fettner S, Zhang X, Douglass W, et al. Pharmacokinetic and pharmacodynamic analysis of subcutaneous tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. J Clin Pharmacol. 2017;57:459–68. https://doi.org/10.1002/jcph.826.

Jones G, Ding C. Tocilizumab: a review of its safety and efficacy in rheumatoid arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010;3:81–9. https://doi.org/10.4137/CMAMD.S4864.

Mahamid M, Mader R, Safadi R. Hepatotoxicity of tocilizumab and anakinra in rheumatoid arthritis: management decisions. Clin Pharmacol. 2011;3:39–433. https://doi.org/10.2147/CPAA.S24004.

Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis. 2009;68:1580–4. https://doi.org/10.1136/ard.2008.092866.

Rosenthal PJ (2017) Antiprotozoal drugs. In: Katzung BG (eds) Basic & clinical pharmacology, 14e. McGraw-Hill Education; New York.

Kelleni MT. Nitazoxanide/azithromycin combination for COVID-19: a suggested new protocol for early management. Pharmacol Res. 2020;157:104874. https://doi.org/10.1016/j.phrs.2020.104874.

Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 2016;9:227–30. https://doi.org/10.1016/j.jiph.2016.04.001.

Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020;50:611–9. https://doi.org/10.3906/sag-2004-145.

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;3:104787. https://doi.org/10.1016/j.antiviral.2020.104787.

Fan HH, Wang LQ, Liu WL, An XP, Liu ZD, He XQ, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model. Chin Med J (Engl). 2020;133:1051–6. https://doi.org/10.1097/CM9.0000000000000797.

Rothan HA, Stone S, Natekar J, Kumari P, Arora K, Kumar M. The FDA- approved gold drug auranofin inhibits novel coronavirus (SARSCOV-2) replication and attenuates inflammation in human cells. Virology. 2020;547:7–11. https://doi.org/10.1016/j.virol.2020.05.002.

Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol. 2014;5:296. https://doi.org/10.3389/fmicb.2014.00296.

Siu KL, Chan CP, Kok KH, Woo PC, Jin DY. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1. Cell Biosci. 2014;4(1):3. https://doi.org/10.1186/2045-3701-4-3.

Sung SC, Chao CY, Jeng KS, Yang JY, Lai MM. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology. 2009;387:402–13. https://doi.org/10.1016/j.virol.2009.02.021.

Rothan HA, Kumar M. Role of endoplasmic reticulum-associated proteins in flavivirus replication and assembly complexes. Pathogens. 2019;8(3):148. https://doi.org/10.3390/pathogens8030148.

Mehta P, Ciurtin C, Scully M, Levi M, Chambers RC. JAK inhibitors in COVID-19: need for vigilance regarding increased inherent thrombotic risk. Eur Respir J. 2020:2001919. doi: 10.1183/13993003.01919-2020.

La Rosée F, Bremer HC, Gehrke I, Kehr A, Hochhaus A, Birndt S, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34:1805–15. https://doi.org/10.1038/s41375-020-0891-0.

Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Infect. 2020;81(2):318–56. https://doi.org/10.1016/j.jinf.2020.04.017.

Bronte V, Ugel S, Tinazzi E, Vella A, Sanctis FDe, Canè S, et al. Baricitinib restrains the immune dysregulation in COVID-19 patients. Preprint at medRxiv, https://doi.org/10.1101/2020.06.26.20135319.

RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med. 2020: NEJMoa2021436 doi: 10.1056/NEJMoa2021436.

Johnson RM, Vinetz JM. Dexamethasone in the management of covid -19. BMJ 2020; 370. https://doi.org/10.1136/bmj.m2648.

Theoharides TC, Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents. 2020;34(3). https://doi.org/10.23812/20-EDITORIAL_1–5.

Brotherton H, Usuf E, Nadjm B, Forrest K, Bojang K, Samateh AL, et al. Dexamethasone for COVID-19: data needed from randomised clinical trials in Africa. Lancet Glob Health. 2020. https://doi.org/10.1016/S2214-109X(20)30318-1.

Li Y, Zhang J, Wang N, Li H, Shi Y, Guo G, et al. Therapeutic drugs targeting 2019-nCoV main protease by high-throughput screening. BioRxiv. Preprint at https://www.biorxiv.org. https://doi.org/10.1101/2020.01.28.922922.

Elfiky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020;25:117592. https://doi.org/10.1016/j.lfs.2020.117592.

Balasubramaniam M, Reis RS. Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv. https://doi.org/10.26434/chemrxiv.12084822.v2.

Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany NY). 2020;12:6511–7. https://doi.org/10.18632/aging.103001.

Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn. 2020;1–9. https://doi.org/10.1080/07391102.2020.1761882.

Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020. https://doi.org/10.1016/j.eng.2020.03.007.10.1016/j.eng.2020.03.007.

Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv. 2020:2020.03.17.20037432.

Chen ZR, Zhou Y, Liu J, Peng HW, Zhou J, Zhong HL, et al. Pharmacotherapics advice in guidelines for COVID-19. Front Pharmacol. 2020;11:950. https://doi.org/10.3389/fphar.2020.00950.

Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model. 2020;60:3277–86. https://doi.org/10.1021/acs.jcim.0c00179.

Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, et al. SARS-CoV-2 and SARS-CoV: virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J Med Virol. 2020. https://doi.org/10.1002/jmv.26222.

Alméciga-Díaz CJ, Pimentel-Vera LN, Caro A, Mosquera A, Moreno CAC, Rojas JPM, et al. Virtual screening of potential inhibitors for SARS-CoV-2 main protease, (2020). https://www.preprints.org/manuscript/202004.0146/v1.

Ohashi H, Watashi K, Saso W, Shionoya K, Iwanami S, Hirokawa T, et al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. bioRxiv 2020.04.14.039925; https://doi.org/10.1101/2020.04.14.039925.

Sayad B, Sobhani M, Khodarahmi R. Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch Med Res. 2020;S0188–4409(20):30551–8. https://doi.org/10.1016/j.arcmed.2020.04.018.

Chien M, Anderson TK, Jockusch S, Tao C, Kumar S, Li X, et al. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase. Preprint. bioRxiv. 2020;2020.03.18.997585. Published 2020 Mar 20. doi:10.1101/2020.03.18.997585.

Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786. https://doi.org/10.1016/j.antiviral.2020.104786.

Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020;47(2):119–21. https://doi.org/10.1016/j.jgg.2020.02.001.

De Meyer S, Bojkova D, Cinatl J, Van Damme E, Buyck C, Van Loock M, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. Int J Infect Dis. 2020;97:7–10. https://doi.org/10.1016/j.ijid.2020.05.085.

Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents. 2020;56(2):105998. https://doi.org/10.1016/j.ijantimicag.2020.105998.

Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81:e21–e2323. https://doi.org/10.1016/j.jinf.2020.03.060.

Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020;64:e00754–e820. https://doi.org/10.1128/AAC.00754-20.

Jang S, Rhee JY. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int J Infect Dis. 2020;S1201–9712(20):30379–89. https://doi.org/10.1016/j.ijid.2020.05.072.

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;ciaa237. doi:10.1093/cid/ciaa237.

Encinar JA, Menendez JA. Potential drugs targeting early innate immune evasion of sars-coronavirus 2 via 2'-O-methylation of viral RNA. Viruses. 2020;12:525. https://doi.org/10.3390/v12050525.

Musarrat F, Chouljenko V, Dahal A, Nabi R, Chouljenko T, Jois SD, et al. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J Med Virol. 2020. https://doi.org/10.1002/jmv.25985.10.1002/jmv.25985.

Khan RJ, Jha RK, Amera GM, Jain M, Singh E, Pathak A, et al. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2'-O-ribose methyltransferase. J Biomol Struct Dyn. 2020;1–14. doi:10.1080/07391102.2020.1753577.

Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv. 2020;3(29). doi: 10.1101/2020.03.29.008631.

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.

Marinho EM, Batista de Andrade Neto J, Silva J, Rocha da Silva C, Cavalcanti BC, Marinho ES, et al. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb Pathog. 2020;104365. doi: 10.1016/j.micpath.2020.104365.

Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(137–146):e3. https://doi.org/10.1016/j.jaci.2020.05.019.

Cantini F, Niccoli L, Nannini C, Matarrese D, Natale MED, Lotti P, et al. Beneficial impact of baricitinib in COVID-19 moderate pneumonia; multicentre study. J Infect. 2020;S0163–4453(20):30433–43. https://doi.org/10.1016/j.jinf.2020.06.052.

Khan SU, Htar TT. Deciphering the binding mechanism of dexamethasone against SARS-CoV-2 main protease: computational molecular modelling approach. Priprint at ChemRxiv. 23/06/2020. https://doi.org/10.26434/chemrxiv.12517535.v1.

Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 2020;252:117652. https://doi.org/10.1016/j.lfs.2020.117652.

Khater S, Das G. Repurposing ivermectin to inhibit the activity of SARS CoV2 helicase: possible implications for COVID 19 therapeutics. OSF Preprints. 2020. https://doi.org/10.31219/osf.io/8dseq.

Anastasiou IA, Eleftheriadou I, Tentolouris A, Tsilingiris D, Tentolouris N. In vitro data of current therapies for SARS-CoV-2. Curr Med Chem. 2020. https://doi.org/10.2174/0929867327666200513075430.10.2174/0929867327666200513075430.

Calderón JM, Zerón HM, Padmanabhan S. Treatment with Hydroxychloroquine vs Hydroxychloroquine + Nitazoxanide in COVID-19 patients with risk factors for poor prognosis: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:504. https://doi.org/10.1186/s13063-020-04448-2.