Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan

Acta Pharmaceutica Sinica B - Tập 9 Số 1 - Trang 97-106 - 2019
Yuanzhi He1,2, Wei Zhang1,3, Tao Guo1, Guoqing Zhang1, Gang Wu1,2, Liu Zhang1, Caifen Wang1, Weifeng Zhu2, Ming Yang2, Xiaoxiao Hu1, Vikramjeet Singh4, Li Wu1,5, Ruxandra Gref4, Jiwen Zhang1,2,3,5
1Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
2Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
3School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
4Institut des Sciences Moléculaires d׳Orsay, UMR 8214 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
5School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li, 2016, Emerging multifunctional metal-organic framework materials, Adv Mater, 28, 8819, 10.1002/adma.201601133

Kitagawa, 2004, Functional porous coordination polymers, Angew Chem Int Ed Engl, 43, 2334, 10.1002/anie.200300610

Howarth, 2017, Best practices for the synthesis, activation, and characterization of metal–organic frameworks, Chem Mater, 29, 26, 10.1021/acs.chemmater.6b02626

Xia, 2017, High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite, Nano Lett, 17, 2788, 10.1021/acs.nanolett.6b05004

Kreno, 2012, Metal-organic framework materials as chemical sensors, Chem Rev, 112, 1105, 10.1021/cr200324t

Wales, 2015, Gas sensing using porous materials for automotive applications, Chem Soc Rev, 44, 4290, 10.1039/C5CS00040H

Mason, 2014, Evaluating metal-organic frameworks for natural gas storage, Chem Sci, 5, 32, 10.1039/C3SC52633J

Li, 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem Soc Rev, 38, 1477, 10.1039/b802426j

Hartlieb, 2016, CD-MOF: a versatile separation medium, J Am Chem Soc, 138, 2292, 10.1021/jacs.5b12860

Xu, 2017, Evaluation of drug loading capabilities of gamma-cyclodextrin-metal organic frameworks by high performance liquid chromatography, J Chromatogr A, 1488, 37, 10.1016/j.chroma.2017.01.062

Gascon, 2013, Llabrés i Xamena FX. Metal organic framework catalysis: quo vadis?, ACS Catal, 4, 361, 10.1021/cs400959k

Bui, 2017, Template synthesis of micro/mesoporous Cl-doped polypyrrole using vapor phase polymerization, Mater Lett, 192, 80, 10.1016/j.matlet.2016.12.054

Sun, 2013, Metal-organic frameworks as potential drug delivery systems, Expert Opin Drug Deliv, 10, 89, 10.1517/17425247.2013.741583

Horcajada, 2010, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat Mater, 9, 172, 10.1038/nmat2608

Miller, 2010, Biodegradable therapeutic MOFs for the delivery of bioactive molecules, Chem Commun, 46, 4526, 10.1039/c001181a

Ren, 2014, Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro, J Hazard Mater, 271, 283, 10.1016/j.jhazmat.2014.02.026

Baati, 2013, In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal-organic frameworks, Chem Sci, 4, 1597, 10.1039/c3sc22116d

Lyu, 2014, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett, 14, 5761, 10.1021/nl5026419

Hu, 2014, A low cytotoxic cationic metal-organic framework carrier for controllable drug release, J Med Chem, 57, 5679, 10.1021/jm5004107

Smaldone, 2010, Metal-organic frameworks from edible natural products, Angew Chem Int Ed Engl, 49, 8630, 10.1002/anie.201002343

Gu, 2017, MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications, Angew Chem Int Ed Engl, 56, 6853, 10.1002/anie.201702162

Shegokar, 2010, Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives, Int J Pharm, 399, 129, 10.1016/j.ijpharm.2010.07.044

Li, 2016, Preparation, in vitro and in vivo evaluation of bexarotene nanocrystals with surface modification by folate–chitosan conjugates, Drug Deliv, 23, 79, 10.3109/10717544.2014.904455

Lv, 2017, Improvement in thermal stability of sucralose by gamma-cyclodextrin metal-organic frameworks, Pharm Res, 34, 269, 10.1007/s11095-016-2059-1

Hartlieb, 2017, Encapsulation of ibuprofen in CD-MOF and related bioavailability studies, Mol Pharm, 14, 1831, 10.1021/acs.molpharmaceut.7b00168

Liu, 2016, Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption, Int J Pharm, 514, 212, 10.1016/j.ijpharm.2016.09.029

Moussa, 2016, Encapsulation of curcumin in cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin, Food Chem, 212, 485, 10.1016/j.foodchem.2016.06.013

Michel, 2013, A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists, Pharmacol Rev, 65, 809, 10.1124/pr.112.007278

White, 2011, Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension, Hypertension, 57, 413, 10.1161/HYPERTENSIONAHA.110.163402

Ojima, 2011, In vitro antagonistic properties of a new angiotensin type 1 receptor blocker, azilsartan, in receptor binding and function studies, J Pharmacol Exp Ther, 336, 801, 10.1124/jpet.110.176636

Lu, 2017, Study on enhanced dissolution of azilsartan-loaded solid dispersion, prepared by combining wet milling and spray-drying technologies, AAPS PharmSciTech, 18, 473, 10.1208/s12249-016-0531-1

Kawaguchi, 2013, Absorption of TAK-491, a new angiotensin II receptor antagonist, in animals, Xenobiotica, 43, 182, 10.3109/00498254.2012.708797

Angeli, 2013, Pharmacokinetic evaluation and clinical utility of azilsartan medoxomil for the treatment of hypertension, Expert Opin Drug Metab Toxicol, 9, 379, 10.1517/17425255.2013.769521

Kalepu, 2015, Insoluble drug delivery strategies: review of recent advances and business prospects, Acta Pharm Sin B, 5, 442, 10.1016/j.apsb.2015.07.003

Shekhawat, 2017, Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles, Acta Pharm Sin B, 7, 260, 10.1016/j.apsb.2016.09.005

Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 2018. Available form: http://dx.doi.org/10.1016/j.apsb.2018.07.011

Al-Kassas, 2017, Nanosizing techniques for improving bioavailability of drugs, J Control Release, 260, 202, 10.1016/j.jconrel.2017.06.003

Clas, 2014, Chemistry-enabled drug delivery (prodrugs): recent progress and challenges, Drug Discov Today, 19, 79, 10.1016/j.drudis.2013.08.014

El Khoury, 2013, Ionic liquid expedites partition of curcumin into solid gel phase but discourages partition into liquid crystalline phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholinesn liposomes, J Phys Chem B, 117, 9699, 10.1021/jp4061413

Paudel, 2013, Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations, Int J Pharm, 453, 253, 10.1016/j.ijpharm.2012.07.015

Li, 2016, Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release, Acta Pharm Sin B, 6, 344, 10.1016/j.apsb.2016.03.003

Lam, 2011, Azilsartan: a newly approved angiotensin II receptor blocker, Cardiol Rev, 19, 300, 10.1097/CRD.0b013e31822e9ba3

Kamada, 2017, Antihypertensive efficacy and safety of the angiotensin receptor blocker azilsartan in elderly patients with hypertension, Drug Chem Toxicol, 40, 110, 10.1080/01480545.2016.1188301

Georgiopoulos, 2016, Azilsartan as a potent antihypertensive drug with possible pleiotropic cardiometabolic effects: a review study, Front Pharmacol, 7, 235, 10.3389/fphar.2016.00235

Miura, 2014, Possible benefits of azilsartan compared with other angiotensin II type 1 receptor blockers, Hypertens Res, 37, 799, 10.1038/hr.2014.118

Zhang, 2017, Solvent effect on the self-assembly of salt solvates of an antihypertensive drug azilsartan and 2-methylimidazole, J Mol Struct, 1137, 320, 10.1016/j.molstruc.2017.02.063

Trott, 2010, Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, 31, 455, 10.1002/jcc.21334

Gasteiger, 1987, A new treatment of chemical reactivity: development of EROS, an expert system for reaction prediction and synthesis design, Top Curr Chem, 137, 19, 10.1007/3-540-16904-0_14

Van Duong, 2018, Microstructure of pharmaceutical semicrystalline dispersions: the significance of polymer conformation, Mol Pharm, 15, 629, 10.1021/acs.molpharmaceut.7b01007

Goesten, 2013, Small-angle X-ray scattering documents the growth of metal-organic frameworks, Catal Today, 205, 120, 10.1016/j.cattod.2012.08.044

Huey, 2007, A semiempirical free energy force field with charge-based desolvation, J Comput Chem, 28, 1145, 10.1002/jcc.20634

Trott, 2010, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, 31, 455, 10.1002/jcc.21334

Sun, 2016, Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions, Int J Pharm, 503, 238, 10.1016/j.ijpharm.2016.01.062

Sun, 2017, Experimental observations and dissipative particle dynamic simulations on microstructures of pH-sensitive polymer containing amorphous solid dispersions, Int J Pharm, 517, 185, 10.1016/j.ijpharm.2016.11.049