Drug delivery of 6-bromoindirubin-3’-glycerol-oxime ether employing poly(d,l-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents

Journal of Nanobiotechnology - Tập 20 - Trang 1-21 - 2022
Anna Czapka1, Christian Grune2, Patrick Schädel1, Vivien Bachmann1, Karl Scheuer3, Michael Dirauf4,5, Christine Weber4,5, Alexios-Leandros Skaltsounis6, Klaus D. Jandt3,5, Ulrich S. Schubert4,5, Dagmar Fischer2,5,7, Oliver Werz1,5
1Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
2Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
3Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
4Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
5Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
6Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, University of Athens, Athens, Greece
7Division of Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany

Tóm tắt

Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(d,l-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around − 15 to − 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen’s egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.

Tài liệu tham khảo