Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit

Springer Science and Business Media LLC - Tập 31 Số 6 - Trang 1129-1138 - 2009
K. Demirevska1, Diana Zasheva2, Rumen Dimitrov2, Lyudmila Simova-Stoilova1, Maria Stamenova2, Urs Feller3
1Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
2Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
3Institute of Plant Sciences, University of Bern, 3013, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson B, Aro E-M (1997) Proteolytic activities and proteases of plant chloroplasts. Physiol Plant 100:780–793. doi: 10.1111/j.1399-3054.1997.tb00005.x

Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58. doi: 10.1080/07352680590910410

Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3

Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pineiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot (Lond) 89:907–916. doi: 10.1093/aob/mcf105

Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44:914–921. doi: 10.1093/pcp/pcg118

Cohen I, Knopf JA, Irihimaitch V, Shapira M (2005) A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and subunit expression. Plant Physiol 137:738–746. doi: 10.1104/pp.104.056341

Cohen I, Sapir Y, Shapira M (2006) A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol 141:1089–1097. doi: 10.1104/pp.106.079046

Damerval C, De Vienne D, Zivy M, Thiellement H (2005) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54. doi: 10.1002/elps.1150070108

Demirevska K, Simova L, Vassileva V, Feller U (2008) Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regul 56:97–106. doi: 10.1007/s10725-008-9288-1

Demirevska-Kepova K, Simova L (1989) Isolation and purification of ribulose-1,5-bisphosphate carboxylase/oxygenase from barley leaves. Bulg J Plant Physiol 15:3–10

Demirevska-Kepova K, Simova L, Kjurkchiev S (1999) Barley leaf Rubisco, Rubisco binding protein and Rubisco activase and their protein/protein interactions. Bulg J Plant Physiol 25(3–4):31–44

Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244. doi: 10.1016/0968-0004(79)90212-3

Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624. doi: 10.1093/jxb/erm242

Fisher RA, Maurer R (1978) Drought tolerance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res 29:897–912. doi: 10.1071/AR9780897

Granier F (1988) Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis 9:712–718. doi: 10.1002/elps.1150091106

Houtz RL, Portis AR Jr (2003) The life of ribulose 1,5-bisphosphate carboxylase/oxygenase—posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158. doi: 10.1016/S0003-9861(03)00122-X

Inmaculada J, Navarro RM, Lenz C, Ariza D, Jorrin J (2006) Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics 6:S207–S214. doi: 10.1002/pmic.200500364

Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) The large subunit of Ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38(4):471–479

Islam N, Lonsdale M, Upadhyaya NM, Higgins TJ, Hirano H, Akhurst R (2004) Protein extraction from mature rice leaves for two-dimensional gel electrophoresis and its application in proteome analysis. Proteomics 4:1903–1908. doi: 10.1002/pmic.200300816

Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

Kalapos T, van den Boogaard R, Lambers H (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185:137–149. doi: 10.1007/BF02257570

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the heat of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0

Mitsuhashi W, Feller U (1992) Effects of light and external solutes on the catabolism of nuclear-encoded stromal proteins in intact chloroplasts isolated from pea leaves. Plant Physiol 100:2100–2105. doi: 10.1104/pp.100.4.2100

Pääkkönen E, Vahala J, Pohjolai M, Holopainen T, Kärenlampi L (1998) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21:671–684. doi: 10.1046/j.1365-3040.1998.00303.x

Pell EJ, Eckardt NA, Glick RE (1993) Biochemical and molecular basis for impairment of photosynthetic potential. Photosynth Res 39:453–462. doi: 10.1007/BF00014598

Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ 24:123–131. doi: 10.1046/j.1365-3040.2001.00665.x

Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi: 10.1016/j.jplph.2004.01.013

Riccardi F, Gazeau P, Jacquemot M-P, Vincent D, Zivy M (2004) Deciphering genetic variation of proteome responses to water deficit in maize leaves. Plant Physiol Biochem 42:1003–1011. doi: 10.1016/j.plaphy.2004.09.009

Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Benett J (2002a) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145. doi: 10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1

Salekdeh Gh H, Siopongco J, Wade LJ, Ghareyazie B, Benett J (2002b) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219. doi: 10.1016/S0378-4290(02)00040-0

Simova-Stoilova L, Vassileva V, Petrova T, Tsenov N, Demirevska K, Feller U (2006) Proteolytic activity in wheat leaves during drought stress and recovery. Gen Appl Plant Physiol Spec Issue 9:1–101

Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013–2026. doi: 10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#

Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375. doi: 10.1002/elps.200305500

Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci USA 104:6466–6471. doi: 10.1073/pnas.0610586104

Yoshida T, Minamikawa T (1996) Successive amino-terminal proteolysis of large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase by vacuolar enzymes from French leaves. Eur J Biochem 238:317–324. doi: 10.1111/j.1432-1033.1996.0317z.x

Zang X, Komatsu S (2007) A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437. doi: 10.1016/j.phytochem.2006.11.005

Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S (2005) Proteomic changes in rice leaves during development of field-growth rice plants. Proteomics 5:961–972. doi: 10.1002/pmic.200401131

Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167(1):91–100. doi: 10.1016/j.plantsci.2004.03.004