Drosophila melanogaster as an emerging model host for entomopathogenic fungi
Tài liệu tham khảo
Adams, 2000, The genome sequence of Drosophila melanogaster, Science, 287, 2185, 10.1126/science.287.5461.2185
Alarco, 2004, Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens, J. Immunol., 172, 5622, 10.4049/jimmunol.172.9.5622
Almaliki, 2021, Eight-carbon volatiles are more toxic to wild-type Drosophila melanogaster than to flies with blocked immune system mutations, Entomol. Exp. Appl., 169, 1092, 10.1111/eea.13108
Araújo, 2016, Diversity of entomopathogenic fungi, 1, 10.1016/bs.adgen.2016.01.001
Armstrong, 1989, Nosema kingi: effects on fecundity, fertility, and longevity of Drosophila melanogaster, J. Exp. Zool., 250, 82, 10.1002/jez.1402500111
Armstrong, 1976, Transmission and infectivity studies on Nosema kingi in Drosophila willistoni and other Drosophilids, Z. Parasitenk, 50, 161, 10.1007/BF00380520
Atriztán-Hernández, 2019, Trichoderma atroviride from predator to prey: role of the mitogen-activated protein kinase tmk3 in fungal chemical defense against fungivory by Drosophila melanogaster larvae, Appl. Environ. Microbiol., 85, 1, 10.1128/AEM.01825-18
Bayman, 2021, Local isolates of Beauveria bassiana for control of the coffee berry borer Hypothenemus hampei in Puerto Rico: virulence, efficacy and persistence, Biol. Control, 155, 10.1016/j.biocontrol.2021.104533
Becher, 2018, Infection of Drosophila suzukii with the obligate insect-pathogenic fungus Entomophthora muscae, J. Pest. Sci., 91, 781, 10.1007/s10340-017-0915-3
Becnel, 2014, Microsporidia in insects, 521
Bedini, 2018, Pathogenic potential of Beauveria pseudobassiana as bioinsecticide in protein baits for the control of the medfly Ceratitis capitata, Bull. Insectol., 71, 31
Bennett, 2015, Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles, Front. Microbiol., 6, 1, 10.3389/fmicb.2015.00206
Bennett, 2015, Are some fungal volatile organic compounds (VOCs) mycotoxins?, Toxins, 7, 3785, 10.3390/toxins7093785
Bensch, 2018, Cladosporium species in indoor environments, Stud. Mycol., 89, 177, 10.1016/j.simyco.2018.03.002
Berry, 2008, Beauveria, 401
Biganski, 2021, Infection effects of the new microsporidian species Tubulinosema suzukii on its host Drosophila suzukii, Sci. Rep., 11, 1, 10.1038/s41598-021-89583-9
Blackwell, 2011, The fungi: 1, 2, 3 ... 5.1 million species?, Am. J. Bot., 98, 426, 10.3732/ajb.1000298
Blackwell, 2020, Laboulbeniomycetes: evolution, natural history, and Thaxter's final word, Mycologia, 112, 1048, 10.1080/00275514.2020.1718442
Błaszczyk, 2014, Trichoderma spp. - application and prospects for use in organic farming and industry, J. Plant Protect. Res., 54, 309, 10.2478/jppr-2014-0047
Bojke, 2018, Comparison of volatile compounds released by entomopathogenic fungi, Microbiol. Res., 214, 129, 10.1016/j.micres.2018.06.011
Bosco, 2007, Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species, Genetics, 177, 1277, 10.1534/genetics.107.075069
Botas, 2007, Drosophila researchers focus on human disease, Nat. Genet., 39, 589, 10.1038/ng0507-589
Boucias, 1998, Entomopathogenic fungi: fungi imperfecti, 321
Brennan, 2002, Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae, FEMS Immunol. Med. Microbiol., 34, 153, 10.1111/j.1574-695X.2002.tb00617.x
Bromenshenk, 2010, Iridovirus and microsporidian linked to honey bee colony decline, PLoS One, 5, 10.1371/journal.pone.0013181
Brunner-Mendoza, 2019, A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico, Biocontrol Sci. Technol., 29, 83, 10.1080/09583157.2018.1531111
Capella-Gutiérrez, 2012, Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi, BMC Biol., 10, 10.1186/1741-7007-10-47
Chamilos, 2007, Role of mini-host models in the study of medically important fungi, Lancet Infect. Dis., 7, 42, 10.1016/S1473-3099(06)70686-7
Cohen, 2001, Formalizing insect rearing and artificial diet technology, Am. Entomol., 47, 198, 10.1093/ae/47.4.198
Cook, 2010, New research resources at the bloomington Drosophila stock center, Fly, 4, 88, 10.4161/fly.4.1.11230
Cossentine, 2016, Impact of acquired entomopathogenic fungi on adult Drosophila suzukii survival and fecundity, Biol. Control, 103, 129, 10.1016/j.biocontrol.2016.09.002
Daza, 2019, Spores of Beauveria bassiana and Trichoderma lignorum as a bioinsecticide for the control of Atta cephalotes, Biol. Res., 52, 51, 10.1186/s40659-019-0259-y
De Gregorio, 2001, Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays, Proc. Natl. Acad. Sci. USA, 98, 12590, 10.1073/pnas.221458698
Douglas, 2018, The Drosophila model for microbiome research, Lab Anim. (NY), 47, 157, 10.1038/s41684-018-0065-0
Druzhinina, 2006, The first 100 Trichoderma species characterized by molecular data, Mycoscience, 47, 55, 10.1007/S10267-006-0279-7
Dyck, 2010
Ekengren, 1999, Drosophila cecropin as an antifungal agent, Insect Biochem. Mol. Biol., 29, 965, 10.1016/S0965-1748(99)00071-5
Elkabti, 2018, Caenorhabditis elegans as a model host to monitor the Candida infection processes, J. Fungi, 4, 10.3390/jof4040123
Ellis, 2011, Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner, Genetics, 187, 157, 10.1534/genetics.110.122754
Elya, 2018, Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory, Elife, 7, 1, 10.7554/eLife.34414
Fargues, 1997, Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins, Mycologia, 89, 383, 10.1080/00275514.1997.12026797
Faria, 2007, Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types, Biol. Control, 43, 237, 10.1016/j.biocontrol.2007.08.001
Franchet, 2019, Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies, Nat. Microbiol., 4, 645, 10.1038/s41564-018-0344-y
Franzen, 2005, Morphological and molecular investigations of Tubiilinosema ratisbonensis gen. nov., sp. nov. (Microsporidia: Tubulinosematidae fam. nov.), a parasite infecting a laboratory colony of Drosophila melanogaster (Diptera: drosophilidae), J. Eukaryot. Microbiol., 52, 141, 10.1111/j.1550-7408.2005.04-3324.x
Fuchs, 2006, Using non-mammalian hosts to study fungal virulence and host defense, Curr. Opin. Microbiol., 9, 346, 10.1016/j.mib.2006.06.004
Futerman, 2006, Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids, Parasitology, 132, 479, 10.1017/S0031182005009339
Ghosh, 2016, Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis, Environ. Monit. Assess., 188, 1, 10.1007/s10661-015-5053-x
Gottar, 2006, Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors, Cell, 127, 1425, 10.1016/j.cell.2006.10.046
Haelewaters, 2018, Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: independent origins and host associations, Int. J. Bus. Innovat. Res., 17, 8396
Haelewaters, 2017, Parasites of parasites of bats: Laboulbeniales (fungi: Ascomycota) on bat flies (Diptera: nycteribiidae) in central Europe, Parasites Vectors, 10, 1, 10.1186/s13071-017-2022-y
Hales, 2015, Genetics on the fly: a primer on the Drosophila model system, Genetics, 201, 815, 10.1534/genetics.115.183392
Hamilos, 2012, Recent advances in the use of Drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi, Int. J. Microbiol, 10.1155/2012/583792
Hanson, 2021, The Drosophila Baramicin polypeptide gene protects against fungal infection, PLoS Pathog., 17, 1, 10.1371/journal.ppat.1009846
Hibbett, 2007, A higher-level phylogenetic classification of the Fungi, Mycol. Res., 111, 509, 10.1016/j.mycres.2007.03.004
Hirt, 1999, Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins, Proc. Natl. Acad. Sci. U.S.A., 96, 580, 10.1073/pnas.96.2.580
Huang, 2020, Genotype by environment interaction for gene expression in Drosophila melanogaster, Nat. Commun., 11, 1, 10.1038/s41467-020-19131-y
Huang, 2014, Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei, PLoS One, 9, 1
Humber, 2008, Evolution of entomopathogenicity in fungi, J. Invertebr. Pathol., 98, 262, 10.1016/j.jip.2008.02.017
Humber, 2005, 1
Hunt, 2016, Cold-seeking behaviour mitigates reproductive losses from fungal infection in Drosophila, J. Anim. Ecol., 85, 178, 10.1111/1365-2656.12438
Inamdar, 2014, A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster, Sci. Rep., 4, 1, 10.1038/srep03833
Inamdar, 2013, Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration, Proc. Natl. Acad. Sci. U.S.A., 110, 19561, 10.1073/pnas.1318830110
Inamdar, 2014, Drosophila melanogaster as a model to characterize fungal volatile organic compounds, Environ. Toxicol., 29, 829, 10.1002/tox.21825
Intra, 2016, The fruit fly Drosophila as a powerful tool in teaching life sciences in middle and high school classrooms, 2349
Jennings, 2011, Drosophila - a versatile model in biology & medicine, Mater. Today, 14, 190, 10.1016/S1369-7021(11)70113-4
Johnson, 2010, Drosophila as a model for human disease, 795
Junqueira, 2012, Galleria mellonella as a model host for human pathogens, Virulence, 3, 474, 10.4161/viru.22493
Kalsbeek, 2001, Field studies of Entomophthora (zygomycetes: Entomophthorales) - induced behavioral fever in Musca domestica (Diptera: muscidae) in Denmark, Biol. Control, 21, 264, 10.1006/bcon.2001.0943
Keller, 2002, The genus Entomophthora (Zygomycetes, Entomophthorales) with a description of five new species, Sydowia, 54, 157
Keyser, 2015, Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark, BMC Microbiol., 15, 1, 10.1186/s12866-015-0589-z
Keyser, 2016, Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat, Pest Manag. Sci., 72, 517, 10.1002/ps.4015
Klich, 2002, 116
Koger, 2020, Patterns and potential mechanisms of thermal preference in E. muscae-infected Drosophila melanogaster, WWU Honor. Progr. Sr. Proj.
Lachance, 1998, Ecology and yeasts, 21
Lee, 2008, Microsporidia evolved from ancestral sexual fungi, Curr. Biol., 18, 1675, 10.1016/j.cub.2008.09.030
Leech, 1931, Leech 1931.pdf, Proc. Entomol. Soc. B. C., 28, 19
Lemaitre, 2007, The host defense of Drosophila melanogaster, Annu. Rev. Immunol., 25, 697, 10.1146/annurev.immunol.25.022106.141615
Lemaitre, 1997, Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Proc. Natl. Acad. Sci. U.S.A., 94, 14614, 10.1073/pnas.94.26.14614
Li, 2019, Insect genomes: progress and challenges, Insect Mol. Biol., 28, 739, 10.1111/imb.12599
Limmer, 2011, Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions, Curr. Drug Targets, 12, 978, 10.2174/138945011795677818
Lionakis, 2012, Drosophila melanogaster as a model organism for invasive aspergillosis, Methods Mol. Biol., Methods in Molecular Biology, 845, 455, 10.1007/978-1-61779-539-8_32
Lionakis, 2010, The growing promise of Toll-deficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment, Virulence, 1, 488, 10.4161/viru.1.6.13311
Lionakis, 2005, Fruit flies as a minihost model for studying drug activity and virulence in Aspergillus, Med. Mycol., 43, 111, 10.1080/13693780400020030
Lionakis, 2005, Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence, J. Infect. Dis., 191, 1188, 10.1086/428587
Lopez, 1999, Alternaria, 42
Lovett, 2017, The insect pathogens, The Fungal Kingdom, 923, 10.1128/9781555819583.ch45
Lozano-Soria, 2020, Volatile organic compounds from entomopathogenic and nematophagous fungi, repel banana black weevil (Cosmopolites sordidus), Insects, 11, 509, 10.3390/insects11080509
Lu, 2016, Insect immunity to entomopathogenic fungi, 251, 10.1016/bs.adgen.2015.11.002
Ludington, 2020, Drosophila as a model for the gut microbiome, PLoS Pathog., 16, 1, 10.1371/journal.ppat.1008398
Maina, 2018, A review on the use of entomopathogenic fungi in the management of insect pests of field crops, J. Entomol. Zool. Stud., 6, 27
Maniania, 1991, Potential of some fungal pathogens for the control of pests in the tropics, Int. J. Trop. Insect Sci., 12, 63, 10.1017/S1742758400020543
McGonigle, 2017, Parallel and costly changes to cellular immunity underlie the evolution of parasitoid resistance in three Drosophila species, PLoS Pathog., 13, 1, 10.1371/journal.ppat.1006683
Miller, 2018, Highly contiguous genome assemblies of 15 Drosophila species generated using nanopore sequencing, G3, 8, 3131, 10.1534/g3.118.200160
Mirzoyan, 2019, Drosophila melanogaster: a model organism to study cancer, Front. Genet., 10, 1, 10.3389/fgene.2019.00051
Moore-Landecker, 2008, Zygomycota and glomeromycota
Mora, 2018, Classification and infection mechanism of entomopathogenic fungi, Arq. Inst. Biol., 84, 1, 10.1590/1808-1657000552015
Mukherjee, 2018, The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection, Virulence, 9, 402, 10.1080/21505594.2017.1405190
Mylonakis, 2002, Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis, Proc. Natl. Acad. Sci. U.S.A., 99, 15675, 10.1073/pnas.232568599
Naranjo-Lázaro, 2014, Susceptibilidad de Drosophila suzukii matsumura (Diptera: drosophilidae) a hongos entomopatógenos, Southwest. Entomol., 39, 201, 10.3958/059.039.0119
Niehus, 2012, Fly culture collapse disorder: detection, prophylaxis and eradication of the microsporidian parasite Tubulinosema ratisbonensis infecting Drosophila melanogaster, Fly, 6, 193, 10.4161/fly.20896
Nishi, 2019, Isolation of Metarhizium spp. from rhizosphere soils of wild plants reflects fungal diversity in soil but not plant specificity, Mycology, 10, 22, 10.1080/21501203.2018.1524799
Oliveira, 2018, Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence, Fungal Biol, 122, 555, 10.1016/j.funbio.2017.12.009
Pal, 2007, Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster, J. Biol. Chem., 282, 8969, 10.1074/jbc.M605927200
Pan, 2018, Invertebrate host responses to microsporidia infections, Dev. Comp. Immunol., 83, 104, 10.1016/j.dci.2018.02.004
Paparazzo, 2015, Survival rate and transcriptional response upon infection with the generalist parasite Beauveria bassiana in a world-wide sample of Drosophila melanogaster, PLoS One, 10, 1, 10.1371/journal.pone.0132129
Park, 2021, Revisiting the phylogeny of microsporidia, Int. J. Parasitol, 10.1016/j.ijpara.2021.02.005
Patel, 2020, Metarhizium, 593
Patočka, 2016, Bioactive metabolites of entomopathogenic fungi Beauveria bassiana, Mil. Med. Sci. Lett., 85, 80, 10.31482/mmsl.2016.015
Peralta-Manzo, 2014, Uso de Metarhizium anisopliae y Cordyceps bassiana (Ascomycetes) para el control de Drosophila suzukii (Diptera: drosophilidae) en cultivo de zarzamora (Rubus fruticosus), Entomol. Mex., 1, 230
Pradel, 2004, Genetic models in pathogenesis, Annu. Rev. Genet., 38, 347, 10.1146/annurev.genet.38.072902.092528
Qiao, 2018, Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier, Elife, 7, 1, 10.7554/eLife.34497
Ramírez-Camejo, 2020, A transcriptome-level view of Drosophila's immune response to the opportunistic fungal pathogen Aspergillus flavus, Infect. Genet. Evol., 82, 10.1016/j.meegid.2020.104308
Ramírez-Camejo, 2017, Differential microbial diversity in Drosophila melanogaster: are fruit flies potential vectors of opportunistic pathogens?, Internet J. Microbiol., 1, 1
Ramírez-Camejo, 2014, An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence in Drosophila melanogaster, Med. Mycol., 52, 211, 10.1093/mmy/myt008
Ramírez-Camejo, 2012, Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere?, Fungal Biol, 116, 452, 10.1016/j.funbio.2012.01.006
Ramírez Camejo, 2017, Probiotics may protect Drosophila from infection by Aspergillus flavus, Int. J. Pharma Sci. Res., 8, 1624
Rehner, 2005, A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs, Mycologia, 97, 84
Roberts, 2004, Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects, Adv. Appl. Microbiol., 54, 1, 10.1016/S0065-2164(04)54001-7
Rodriguez-Fernandez, 2020, Hallmarks of aging Drosophila intestinal stem cells, Mech. Ageing Dev., 190, 10.1016/j.mad.2020.111285
Rosato, 2006, Molecular genetics of the fruit-fly circadian clock, Eur. J. Hum. Genet., 14, 729, 10.1038/sj.ejhg.5201547
Ruiz-Sanchez, 2012, Effects of the microbial metabolite destruxin a on ion transport by the gut and renal epithelia of Drosophila melanogaster, Arch. Insect Biochem. Physiol., 80, 109, 10.1002/arch.21023
Samuels, 1996, Trichoderma: a review of biology and systematics of the genus, Mycol. Res., 100, 923, 10.1016/S0953-7562(96)80043-8
Sasan, 2013, Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli, J. Indian Dent. Assoc., 35, 288
Sasan, 2012, The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development, Am. J. Bot., 99, 101, 10.3732/ajb.1100136
Shahrestani, 2018, Sexual dimorphism in Drosophila melanogaster survival of Beauveria bassiana infection depends on core immune signaling, Sci. Rep., 8, 1, 10.1038/s41598-018-30527-1
Siegel, 1997, Testing the pathogenicity and infectivity of entomopathogens to mammals, 325
Sirpa, 2014, Evaluación de actividad insecticida y quitinolítica de Trichoderma inhamatum y Beauveria bassiana, Rev. Boliv. Química, 31, 5
Sofer, 1994, Drosophila genetics in the classroom, Genetics, 136, 417, 10.1093/genetics/136.1.417
Sokolova, 2020, Development of Anncaliia algerae (microsporidia) in Drosophila melanogaster, J. Eukaryot. Microbiol., 67, 125, 10.1111/jeu.12762
Solter, 2000, Entomopathogenic microsporidia, 231
Sookar, 2008, Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: tephritidae), J. Appl. Entomol., 132, 778, 10.1111/j.1439-0418.2008.01348.x
Spatafora, 2016, A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data, Mycologia, 108, 1028, 10.3852/16-042
Starmer, 2001, Laboulbeniales associated with the Drosophila affinis subgroup in central New York, Drosoph. Inf. Serv., 84, 22
Stoleru, 2004, Coupled oscillators control morning and evening locomotor behaviour of Drosophila, Nature, 431, 862, 10.1038/nature02926
Suh, 2005, The beetle gut: a hyperdiverse source of novel yeasts, Mycol. Res., 109, 261, 10.1017/S0953756205002388
Sung, 2008, The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses, Mol. Phylogenet. Evol., 49, 495, 10.1016/j.ympev.2008.08.028
Taylor
Tkaczuk, 2014, The occurrence of entomopathogenic fungi in soils from fields cultivated in a conventional and organic system, J. Ecol. Eng., 15, 137
Tzou, 2002, Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants, Proc. Natl. Acad. Sci. U.S.A., 99, 2152, 10.1073/pnas.042411999
Urbina, 2013, The gut of Guatemalan passalid beetles: a habitat colonized bycellobiose- and xylose-fermenting yeasts, Fungal Ecol, 6, 339, 10.1016/j.funeco.2013.06.005
Valero-Jiménez, 2016, Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana, J. Invertebr. Pathol., 133, 41, 10.1016/j.jip.2015.11.011
Vega, 2012, Fungal entomopathogens, 171
Velikova, 2016, Evaluation of Galleria mellonella larvae for studying the virulence of Streptococcus suis, BMC Microbiol., 16, 1, 10.1186/s12866-016-0905-2
Venema, 2006, Enhancing undergraduate teaching and research with a Drosophila virginizing system, CBE-Life Sci. Educ., 5, 353, 10.1187/cbe.06-03-0152
Verma, 2007, Antagonistic fungi, Trichoderma spp.: panoply of biological control, Biochem. Eng. J., 37, 1, 10.1016/j.bej.2007.05.012
Vijendravarma, 2009, Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs, Evolution, 63, 104, 10.1111/j.1558-5646.2008.00516.x
Visagie, 2014, Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world, Stud. Mycol., 78, 63, 10.1016/j.simyco.2014.07.002
Wadi, 2020, Evolution of microsporidia: an extremely successful group of eukaryotic intracellular parasites, PLoS Pathog., 16, 10.1371/journal.ppat.1008276
Wang, 2017, Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements, Annu. Rev. Entomol., 62, 73, 10.1146/annurev-ento-031616-035509
Wang, 2020, Genetic variation for resistance to the specific fly pathogen Entomophthora muscae, Sci. Rep., 10, 1
Wang, 2017, The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel, PLoS Pathog., 13, 10.1371/journal.ppat.1006260
Watson, 1993, Behavioral fever response of Musca domestica (Diptera: muscidae) to infection by Entomophthora muscae (zygomycetes: Entomophthorales), J. Invertebr. Pathol., 61, 10, 10.1006/jipa.1993.1003
Woo, 2014, Trichoderma-based products and their widespread use in agriculture, Open Mycol. J., 8, 71, 10.2174/1874437001408010071
Wu, 2019, Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi, Mycology, 10, 127, 10.1080/21501203.2019.1614106
Yanagawa, 2018, Olfactory cues play a significant role in removing fungus from the body surface of Drosophila melanogaster, J. Invertebr. Pathol., 151, 144, 10.1016/j.jip.2017.11.011
Younes, 2020, Drosophila as amodel organism in host–pathogen interaction studies, Front. Cell. Infect. Microbiol., 10, 1, 10.3389/fcimb.2020.00214
Yuan, 2020, Beauveria bassiana ribotoxin inhibits insect immunity responses to facilitate infection via host translational blockage, Dev. Comp. Immunol., 106, 10.1016/j.dci.2019.103605