Drop Tower Setup to Study the Diffusion-driven Growth of a Foam Ball in Supersaturated Liquids in Microgravity Conditions
Tóm tắt
The diffusion-driven growth of a foam ball is a phenomenon that appears in many manufacturing process as well as in a variety of geological phenomena. Usually these processes are greatly affected by gravity, as foam is much lighter than the surrounding liquid. However, the growth of the foam free of gravity effects is still very relevant, as it is connected to manufacturing in space and to the formation of rocks in meteorites and other small celestial bodies. The aim of this research is to investigate experimentally the growth of a bubble cloud growing in a gas-supersaturated liquid in microgravity conditions. Here, we describe the experiments carried out in the drop tower of the Center of Applied Space Technology and Microgravity (ZARM). In few words, a foam seed is formed with spark-induced cavitation in carbonated water, whose time evolution is recorded with two high-speed cameras. Our preliminary results shed some light on how the size of the foam ball scales with time, in particular at times much longer than what could be studied in normal conditions, i.e. on the surface of the Earth, where the dynamics of the foam is already dominated by gravity after several milliseconds.
Tài liệu tham khảo
Barrett, D.G.T., Kelly, S., Daly, E.J., Dolan, M.J., Drenckhan, W., Weaire, D., Hutzler, S.: Taking plateau into microgravity: The formation of an eightfold vertex in a system of soap films. Microgravity Sci. Tech. 20, 17–22 (2008)
Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)
Cox, S.J., Verbist, G.: Liquid flow in foams under microgravity. Microgravity Sci. Tech. 14, 45–52 (2003)
Durian, D.J., Weitz, D.A., Pine, D.J.: Scaling behavior in shaving cream. Phys. Rev. A. 44, R7902–7906 (1991)
Ehl, R.G., Ihde, A.: Faraday’s electrochemical laws and the determination of equivalent weights. J. Chem. Edu. 31, 226–232 (1954)
Enríquez, O.R.: Growing Bubbles and Freezing Drops: Depletion Effects and Tip Singularities. University of Twente, PhD Thesis (2015)
Enríquez, O.R., Hummelink, C., Bruggertm, G.-W., Lohse, D., van der Meer, A., Prosperetiand D., Sun, C.: Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instruments. 84, 065111 (2013)
Epstein, P.S., Plesset, M.S.: Stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509 (1950)
Goh, B.H.T., Oh, Y.D.A., Klaseboer, E., Ohl, S.W., Khoo, B.C.: A low-voltage spark-discharge method for generation of consistent oscillating bubbles. Rev. Sci. Instr. 84, 014705 (2013)
Harrison, K., Levene, J.I.: Electrolysis of Water Solar Hydrogen Generation. Springer, New York (2008)
Homan, T., Gjaltema, C., Van Der Meer, D.: Collapsing granular beds: The role of interstitial air. Phys. Rev. E. 89, 052204 (2014)
Medina-Palomo, A.: Experimental and Analytical Study of the Interaction between Short Acoustic Pulses and Small Clouds of Microbubbles. Universidad Carlos III de Madrid, PhD thesis (2015)
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., de Bosset, A., Farhat, M.: Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107, 204501 (2011)
Rodríguez-Rodríguez, J., Casado-Chacón, A., Fuster, D.: Physics of beer tapping. Phys. Rev. Lett. 113, 214501 (2014)
Saint-Jalmes, A., Marze, S., Safouane, M., Langevin, D.: Foam experiments in parabolic flights: Development of an iss facility and capillary drainage experiments. Microgravity Sci. Tech. 18, 22–30 (2006)
Scriven, L.E.: On the dynamic of phase growth. Chem. Eng. Sci. 10, 1–13 (1959)
Strong, F.C.: Faraday’s laws in one equation. J. Chem. Edu. 38, 98 (1961)
Stuart, F.M., Harrop, P.J., Knott, S., Turner, G.: Laser extraction of helium isotopes from antarctic micrometeorites: Source of he and implications for the flux of extraterrestrial (3)he to earth. Geochim. Cosmochim. Acta 63, 2653–2665 (1999)
Willert, C., Stasicki, B., Klinner, J., Moessner, S.: Pulsed operation of high-power light-emitting diodes for imaging flowvelocimetry. Meas. Sci. Technol. 21, 075402 (2010)