Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana

Kwasi Appeaning Addo1, Philip‐Neri Jayson‐Quashigah1, Samuel Nii Ardey Codjoe2, Francisca Martey3
1Department of Marine and Fisheries Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box Lg 99, Legon, Accra, Ghana
2Regional Institute for Population Studies, College of Humanities, University of Ghana, P. O. Box LG 96, Legon, Ghana
3Ghana Meteorological Agency, P. O. Box Lg 87, Legon, Accra, Ghana

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allotey, D.F.K., R.D. Asiamah, C.D. Dedzoe, and A.L. Nyamekye. 2008. Physico-chemical properties of three salt-affected soils in the lower Volta Basin and management strategies for their sustainable utilization. West African journal of applied ecology 12(1):1–14.

Angnuureng, B.D., K. Appeaning Addo, and G. Wiafe. 2013. Impact of sea defense structures on downdrift coasts: The case of Keta in Ghana. Academia Journal of Environmental Science 1 (6): 104–121.

Angnuureng, D.B., R. Almar, K. Appeaning Addo, N. Senechal, B. Castelle, S.W. Laryea, and G. Wiafe. 2016. Video observation of waves and shoreline change on the microtidal Jamestown Beach in Ghana. In Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 1022–1026, ed. A. Vila-Concejo, E. Bruce, D.M. Kennedy, and R.J. McCarroll, 0749–0208. Coconut Creek (Florida): ISSN.

Appeaning Addo, K. 2015. Assessment of the Volta Delta shoreline change. Journal of Coastal Zone Management. 18: 408. https://doi.org/10.4172/jczm.1000408 .

Appeaning Addo K (2016) Drone footage of community flooding and coastal erosion in the Volta Delta. The DECCMA project. http://www.deccma.com/deccma/projects_database/features/?action=story&id=82 accessed 20/11/2017.

Appeaning Addo, K., R.J. Nicholls, S.N.A. Codjoe, and A. Mumuni. 2018. A biophysical and socio-economic review of the Volta Delta, Ghana. Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-17-00129.1 .

Appeaning Addo, K., M. Walkden, and J.P. Mills. 2008. Detection, measurement and prediction of shoreline recession in Accra, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing. 63 (5): 543–558.

Armah, A.K., G. Wiafe, and D.G. Kpelle. 2005. Sea-level rise and coastal. Biodiversity in West Africa: A case study from Ghana. In Climate change and Africa, ed. P.S. Low, 204–217. Cambridge: University press.

Basha, E.A., S. Ravela, and D. Rus. 2008. Model-based monitoring for early warning flood detection. In: Proceedings of the 6th ACM conference on embedded network sensor systems (pp. 295-308). Chicago: ACM.

Biney, C. 2010. Connectivities and linkages within the Volta Basin. The Global Dimensions of Change in River Basins 91.

Boak, E.H., and I.L. Turner. 2005. Shoreline definition and detection: A review. Journal of Coastal Research 21 (4): 688–703.

Boateng I (2009) Development of integrated shoreline management planning: A case study of Keta, Ghana. In: Proceedings of the Federation of International Surveyors Working Week 2009-surveyors key role in accelerated development, TS 4E, Eilat, Israel, 3–8 May.

Boateng, I. 2012. An assessment of the physical impacts of sea-level rise and coastal adaptation: A case study of the eastern coast of Ghana. Climatic Change 114 (2): 273–293.

Bokpe SJ (2010) HELP!...Azizanya is drowning. Retrieved march 1, 2018, From http://sethbnews09.blogspot.com/2010/08/helpazizanya-is-drowning-friday-august.html

Bollen, M., K. Trouw, F. Lerouge, V. Gruwez, A. Bolle, B. Hoffman, and P. Mercelis. 2011. Design of a Coastal Protection Scheme for Ada at the Volta-River mouth (Ghana). Coastal Engineering Proceedings 1 (32): 36.

Casella, E., A. Rovere, A. Pedroncini, L. Mucerino, M. Casella, L.A. Cusati, M. Vacchi, M. Ferrari, and M. Firpo. 2014. Study of wave run-up using numerical models and low-altitude aerial photogrammetry: A tool for coastal management. Estuarine, Coastal and Shelf Science 149: 160–167.

Chabot, D., and D.M. Bird. 2014. Small unamnned aircraft: Precise and convenient new tools for surveying wetlands. Journal of Unmanned Vehicle Systems 1: 15–24.

Chikhradze, N., R. Henriques, M. Elashvili, G. Kirkitadze, Z. Janelidze, N. Bolashvili, and G. Lominadze. 2015. Close range photogrammetry in the survey of the coastal area Geoecological conditions (on the example of Portugal). Earth 4 (5–1): 35–40.

Corcoran, E., C. Ravilious, and M. Skuja. 2007. Mangroves of western and central Africa (No. 26). Chicago: UNEP/Earthprint.

Crowell, M., S.P. Leatherman, and B. Douglas. 2005. Erosion: Historical Analysis and Forecasting. In Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, ed. M.L. Schwartz, 428–432. the Netherlands: Springer.

Darwin, N., N.F.A. Hamid, W.S. Udin, and N.A.B. Mohd. 2013. Light weight rotary-wing UAV for large scale mapping applications. Asia geospatial forum, 24–26. Kuala Lumpur, Malaysia: September.

Delacourt, C., P. Allemand, M. Jaud, P. Grandjean, A. Deschamps, J. Ammann, V. Cuq, and S. Suanez. 2009. DRELIO: An unmanned helicopter for imaging coastal areas, SI 56. In Proceedings of the 10th international coastal symposium, 1489–1493.

Dolan, R., M.S. Fenster, and S.J. Holme. 1991. Temporal Analysis of Shoreline Recession and Accretion. Journal of Coastal Research 7 (3): 723–744.

Duodu F (2011) Volta region submerged. General news, modern Ghana. https://www.modernghana.com/news/342077/volta-region-submerged.html accessed 5/9/2018.

Elaksher, A.F., S. Bhandari, C.A. Carreon-Limones, and R. Lauf. 2017. Potential of UAV lidar systems for geospatial mapping. In Lidar Remote Sensing for Environmental Monitoring 2017 (Vol. 10406, p. 104060L). International Society for Optics and Photonics.

Ericson, J.P., C.J. Vörösmarty, S.L. Dingman, L.G. Ward, and M. Meybeck. 2006. Effective Sea-level rise and deltas: Causes of change and human dimension implications. Global and Planetary Change 50 (1): 63–82.

Fagotto M (2016) West Africa Is Being Swallowed by the Sea: Encroaching waters off the coast of Togo, Ghana, Mauritania, and others are destroying homes, schools, fish, and a way of life. Retrieved March 1, 2018, from http://foreignpolicy.com/2016/10/21/west-africa-is-being-swallowed-by-the-sea-climate-change-ghana-benin/

Ford, M. 2013. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje atoll, Marshall Islands. Remote Sensing of Environment 135: 130–140.

Gakpo JO (2016) Climate refugees: Life in Ghana’s fast vanishing lands - 2. Joy news. | http://www.myjoyonline.com/opinion/2016/October-25th/climate-refugees-life-in-ghanas-fast-vanishing-lands-2.php assessed on 6th November 2016.

Genz, A.S., C.H. Fletcher, R.A. Dunn, L.N. Frazer, J. John, and J.J. Rooney. 2007. The predictive accuracy of shoreline change rate methods and Alongshore Beach variation on Maui, Hawaii. Journal of Coastal Research 23 (1): 87–105.

Ghanaweb (2008) Relief for communities hit by tidal waves. https://www.ghanaweb.com/GhanaHomePage/NewsArchive/Relief-for-communities-hit-by-tidal-waves-150323 Accessed 5/9/2018 .

Giardino, A., R. Schrijvershof, C.M. Nederhoff, H. de Vroeg, C. Brière, P.K. Tonnon, and J. Schellekens. 2018. A quantitative assessment of human interventions and climate change on the west African sediment budget. Ocean & Coastal Management 156: 249–265.

Goldberg D, Corcoran M, Picard RG (2013) Remotely piloted aircraft systems and journalism: Opportunities and challenges of drones in news gathering.

Gonçalves, J.A., and R. Henriques. 2015. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing 104: 101–111.

Graham, D.M., J.C. Sault, and J. Bailey. 2003. National Ocean Service Shoreline - past, Present, and Future. Journal of Coastal Research SI (38): 14–32.

Hackney, C., and A. Clayton. 2015. Unmanned Aerial Vehicles (UAVs) and Their Application in Geomorphic Mapping. Geomorphological Techniques. In Bristish Society for Geomporlogy, ed. L. Lucy Clarke and J. Nield, 6.

Harwin, S., and A. Lucieer. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing 4 (6): 1573–1599.

Hugenholtz, C.H., K. Whitehead, O.W. Brown, T.E. Barchyn, B.J. Moorman, A. LeClair, K. Riddell, and T. Hamilton. 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology 194: 16–24.

Jayson-Quashigah, P.-N., K. Appeaning Addo, and K.S. Kodzo. 2013. Medium resolution satellite imagery as a tool for monitoring shoreline change. Case study of the eastern coast of Ghana. Journal of Coastal Research 65: 551–516.

Karley, N.K. 2009. Flooding and physical planning in urban areas in West Africa: Situational analysis of Accra, Ghana. Theoretical and Empirical Researches in Urban Management 13: 25.

Klemas, V.V. 2015. Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. Journal of Coastal Research 31 (5): 1260–1267.

Kussul, N., A., Shelestov, S., Skakun, and O. Kravchenko. 2008. Data assimilation technique for flood monitoring and prediction. International Journal "Information Theories & Applications" 15(2008):76–83.

Lane, S.N., J.H. Chandler, and K. Porfiri. 2001. Monitoring river channel and flume surfaces with digital photogrammetry. Journal of Hydraulic Engineering 127 (10): 871–877.

Leatherman, S.P., D. Whitman, and K. Zhang. 2005. Airborne Laser Terrain Mapping and Light Detection and Ranging. In Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series, ed. M.L. Schwartz, 21–23. the Netherlands: Springer.

Lumor, M. 2015. Estimation of Streamflow and Fluvial Sediment Loads in the White Volta Basin under Future Climate Change. In 2015 AGU Fall Meeting. Agu.Catalyst (2015). Catalyst quick take: Women in male-dominated industries and occupations in U.S. and Canada, 2015. New York: Catalyst.

Mancini, F., M. Dubbini, M. Gattelli, F., Stecchi, S., Fabbri, and G. Gabbianelli. 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing 5 (12): 6880–6898.

Matgen, P., R. Hostache, G. Schumann, L. Pfister, L. Hoffmann, and H.H.G. Savenije. 2011. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, Parts A/B/C 36 (7): 241–252.

Mohammed, F., A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar. 2014. UAVs for smart cities: Opportunities and challenges. In Unmanned Aircraft Systems (ICUAS), 2014 International Conference IEEE, 267–273.

Moore, L.J. 2000. Shoreline mapping techniques. Journal of Coastal Research 16 (1): 111–124.

Morton, R.A. 1991. Accurate shoreline mapping: Past, present and future. In Coastal sediment’91, edited by Kraus, 997–1010. New York: N. C.

Mumuni, A., Y. Atiglo, C. Addoquaye-Tagoe, and S. Codjoe. 2017. Descriptive statistics from sending area survey data - Volta Delta. Royal Senchi, Ghana: Ghana. DECCMA consortium workshop.

Oguntunde, P., J. Friesen, N. van de Giesen, and H.H.G. Savenije. 2006. Hydroclimatology of the Volta River basin in West Africa: Trends and variability from 1901 to 2002. Physics and Chemistry of the Earth 31: 1180–1188.

Oteng-Ababio, M., K. Owusu, and K. Appeaning Addo. 2011. The vulnerable state of the Ghana coast: The case of Faana-Bortianor. Jàmbá: Journal of Disaster Risk Studies 3 (2): 429–442.

Owens B (2016) Drones on the Delta: In Ghana’s Volta River Delta, the remotely-operated aerial vehicles are going where researchers can’t to help study coastal erosion, flooding and migration. http://idrc.canadiangeographic.ca/education/docs/ghana-drones-delta-workbook.pdf (Accessed 10/08/2017).

Owusu, K., and P. Waylen. 2013. The changing rainy season climatology of mid-Ghana. Theoretical and Applied Climatology. 112 (3): 419–430. https://doi.org/10.1007/s00704-012-0736-5 .

Pérez-Alberti, A., and A.S. Trenhaile. 2015. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, north-western Spain. Earth Surface Processes and Landforms 40 (1): 105–111 Pix4D, (2013). Pix4D Mapper Pro: http://pix4d.com/pix4dmapper-pro/ .

Roest LWM (2018) The coastal system of the Volta Delta, Ghana: Strategies and opportunities for development. TU Delft Delta Infrastructures and Mobility Initiative (DIMI).

Rossi, G. 1989. L’e’rosion du littoral dans le Golfe du Be ´nin: un exemple de perturbation d’un e’quilibre morphodynamique. Zeitschrift fu¨r Geomorphologie NF Suppl Band 73: 139–165.

Sagoe-Addy, K., and K. Appeaning Addo. 2013. Effect of predicted sea level rise on tourism facilities along Ghana’s Accra coast. Journal of Coastal Conservation and Management. 17 (1): 155–166. https://doi.org/10.1007/s11852-012-0227-y .

Smith, A.W.S., and L.A. Jackson. 1992. The variability in width of the Visible Beach. Shore and Beach 60 (2): 7–14.

STAFF AG (2017) Wilderness society to use drones to raise awareness of deforestation. Australian geographic. http://www.australiangeographic.com.au/news/2017/01/wilderness-society-to-use-drones-to-raise-awareness-of-deforestation (Accessed 15/01/2018).

Stockdon, H.F., A.H. Sallenger, H.J. List, and R.A. Holman. 2002. Estimation of shoreline position and change using airborne topographic lidar data. Journal of Coastal Research 18 (3): 502–513.

Syvitski, J.P. 2008. Deltas at risk. Sustainability science 3 (1): 23–32 Journal of sustainable development; 9(3); 2016. ISSN 1913-9063 E-ISSN 1913-907.

Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2017) Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change (ver. 4.4, July 2017): U.S. Geological Survey Open-File Report 2008 1278, https://pubs.er.usgs.gov/publication/ofr20081278 (Accessed 12/12/2017).

Turner, I.L., M.D. Harley, and C.D. Drummond. 2016. UAVs for coastal surveying. Coastal Engineering Volume 114: 19–24.

Vousdoukas, M.I., G. Pennucci, R.A. Holman, and D.C. Conley. 2011. A semi-automatic technique for Rapid Environmental Assessment in the coastal zone using Small Unmanned Aerial Vehicles (SUAV). Journal of Coastal Research SI 64: 1755–1759 (Proceedings of the 11th International Coastal Symposium), Szczecin, Poland.

Wallace, L., A. Lucieer, C. Watson, and D. Turner. 2012. Development of a UAV-LiDAR system with application to Forest inventory. Remote Sensing 4: 1519–1543.

Wellens-Mensah, J., A.K. Armah, D.S. Amlalo, and K. Tetteh. 2002. Ghana National Report Phase 1: Integrated problem analysis. GEF MSP sub-Saharan Africa project (GF/6010-0016): Development and protection of the coastal and marine environment in sub-Saharan Africa. Accra.

Whitehead, K., and C.H. Hugenholtz. 2014. Remote sensing of the environment with small unmannned aircraft systems (UASs), part 1: A review of progress and challenges. Journal of unmanned Vehicle Systems 2: 69–85.

Whitehead, K., C.H. Hugenholtz, S. Myshak, O. Brown, A. LeClair, A. Tamminga, T.E. Barchyn, B. Moorman, and B. Eaton. 2014. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications1. Journal of Unmanned Vehicle Systems 02 (03): 86–102.

Wong, P.P., I.J. Losada, J.-P. Gattuso, J. Hinkel, A. Khattabi, McInnes KL, Y. Saito, and A. Sallenger. 2014. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White, 361–409. Cambridge and New York, NY: Cambridge University Press.