Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố ảnh hưởng đến phát thải carbon dioxide: Nghiên cứu thực nghiệm sử dụng phương pháp phân cụm có phân cấp và không phân cấp
Tóm tắt
Việc giảm thiểu phát thải CO2 đòi hỏi một nỗ lực toàn cầu với trách nhiệm chung nhưng khác biệt. Trong bài báo này, chúng tôi xác định các nhóm phát thải CO2 ở 72 quốc gia. Đầu tiên, bằng cách sử dụng phiên bản ngẫu nhiên của IPAT và áp dụng kỹ thuật hiệu ứng tương quan chung động, chúng tôi xác định ba yếu tố chính ảnh hưởng đến phát thải CO2 (năng lượng không tái tạo, dân số và GDP thực). Trong bước thứ hai, cả phương pháp phân cụm có phân cấp và không phân cấp được xem xét để xác định số lượng nhóm tối ưu. Chúng tôi xác định từ hai đến bốn nhóm với các quốc gia thành viên khác nhau, và đặc biệt, trong hầu hết các trường hợp, giải pháp với 2 nhóm dường như là tối ưu. Nội dung của các nhóm thay đổi nhẹ theo các phương pháp phân cụm cho mỗi khoảng thời gian. Kết quả phân cụm chỉ sử dụng tổng lượng phát thải CO2 cho thấy các quốc gia mà chúng tôi xem xét hình thành ba nhóm, trong đó Trung Quốc và Hoa Kỳ mỗi nước nằm trong một nhóm thành viên duy nhất. 70 quốc gia còn lại tạo thành nhóm thứ ba. Những phát hiện của chúng tôi phản ánh vai trò nổi bật của Trung Quốc và Hoa Kỳ trong tổng phát thải CO2. Phân tích theo các giai đoạn và các nước phát thải lớn nhất phản ánh một cấu trúc phân cụm khác. Một số khuyến nghị chính sách trong việc thiết lập giảm phát thải được đưa ra, xem xét các nhóm khác nhau ở các quốc gia.
Từ khóa
#phát thải carbon dioxide #phân cụm #tác nhân nhân khẩu học #GDP thực #chính sách môi trườngTài liệu tham khảo
Ahmed K, Bhattacharya M, Qazi AQ, Long W (2016) Energy consumption in China and underlying factors in a changing landscape: empirical evidence since the reform period. Renew Sust Energ Rev 58:224–234
Aldy JE (2006) Per capita carbon dioxide emissions: convergence or divergence? Environ Resour Econ 33(4):533–555
Anandalingam G, Bhattacharya D (1985) Process modelling and industrial energy use in developing countries—the steel industry in India. Omega 13(4):295–306
Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks. Academic press, Cambridge
Apergis N (2016) Environmental Kuznets curves: new evidence on both panel and country- level CO2 emissions. Energy Econ 54:263–271
Apergis N, Payne JE (2010) Renewable energy consumption and growth in Eurasia. Energy Econ 32(6):1392–1397
Awaworyi Churchill S, Inekwe J, Ivanovski K (2018) Conditional convergence in per capita carbon emissions since 1900. Appl Energy 228:916–927
Bai J (2009) Panel data models with interactive fixed effects. Econometrica 77(4):1229–1279
Bhattacharya M, Rafiq S, Bhattacharya S (2015) The role of technology on the dynamics of coal consumption—economic growth: new evidence from China. Appl Energy 154:686–695
Bhattacharya M, Paramati SR, Ozturk I, Bhattacharya S (2016) The effect of renewable energy consumption on economic growth: evidence from top 38 countries. Appl Energy 162:733–741
Bhattacharya M, Inekwe JN, Sadorsky P, Saha A (2018) Convergence of energy productivity across Indian states and territories. Energy Econ 74:427–440
Bhattacharya M, Inekwe JN, Sadorsky P (2020) Convergence of energy productivity in Australian states and territories: determinants and forecasts. Energy Econ 85:104538
Cai Y, Sam CY, Chang T (2018) Nexus between clean energy consumption, economic growth and CO2 emissions. J Clean Prod 182:1001–1011
Caiado J, Maharaj E, D’urso P (2015) Time series clustering. Handbook of cluster analysis. Chapman and Hall/CRC, Boca Raton
Change IPOC (1990) Climate change: the IPCC scientific assessment. Mass, Cambridge
Chudik A, Pesaran MH (2015) Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J Econometr 188(2):393–420
Churchill SA, Inekwe J, Ivanovski K, Smyth R (2018) The environmental Kuznets curve in the OECD: 1870–2014. Energy Econ 75:389–399
Cole MA, Neumayer E (2004) Examining the impact of demographic factors on air pollution. Popul Environ 26(1):5–21
Criado CO, Grether JM (2011) Convergence in per capita CO2 emissions: a robust distributional approach. Resour Energy Econ 33(3):637–665
D’Urso P, Di Lallo D, Maharaj EA (2013) Autoregressive model-based fuzzy clustering and its application for detecting information redundancy in air pollution monitoring networks. Soft Comput 17(1):83–131
Dai X, Kuosmanen T (2014) Best-practice benchmarking using clustering methods: application to energy regulation. Omega 42(1):179–188
De Gouw J, Parrish D, Frost G, Trainer M (2014) Reduced emissions of CO2, NOX, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Fut 2(2):75–82
Dietz T, Rosa EA (1994) Rethinking the environmental impacts of population, affluence and technology. Hum Ecol Rev 1(2):277–300
D’Urso P, De Giovanni L, Maharaj EA, Massari R (2014) Wavelet-based self-organizing maps for classifying multivariate time series. J Chemom 28(1):28–51
D’Urso P, De Giovanni L, Massari R (2015) Time series clustering by a robust autoregressive metric with application to air pollution. Chemometr Intel Lab Sys 141:107–124
D’Urso P, Massari R, Cappelli C, De Giovanni L (2017) Autoregressive metric-based trimmed fuzzy clustering with an application to pm10 time series. Chemometr Intel Lab Sys 161:15–26
Ehrlich PR, Holdren JP (1971) Impact of population growth. Science 171(3977):1212–1217
Everitt BS, Landau S, Leese M, Stahl D (2011) An introduction to classification and clustering. Cluster analysis. Wiley, Hoboken, pp 1–13
Guan D, Hubacek K, Weber CL, Peters GP, Reiner DM (2008) The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change 18(4):626–634
Hennig C, Meila M, Murtagh F, Rocci R (2015) Handbook of cluster analysis. CRC Press, Boca Raton
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Kagawa S, Suh S, Hubacek K, Wiedmann T, Nansai K, Minx J (2015) Co2 emission clusters within global supply chain networks: implications for climate change mitigation. Glob Environ Change 35:486–496
Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis. Wiley, New York
Lafuente-Rego B, D’Urso P, Vilar J (2018) Robust fuzzy clustering based on quantile autocovariances. Statistical papers: 1–56
Li DC, Chang CJ, Chen CC, Chen WC (2012) Forecasting short-term electricity consumption using the adaptive grey-based approach—an Asian case. Omega 40(6):767–773
Liddle B (2015) What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob Environ Change 31:62–73
Manly BF, Alberto JAN (2016) Multivariate statistical methods: a primer. CRC Press, Boca Raton
Mikayilov JI, Galeotti M, Hasanov FJ (2018) The impact of economic growth on CO2 emissions in Azerbaijan. J Clean Prod 197:1558–1572
Moon HR, Weidner M (2015) Linear regression for panel with unknown number of factors as interactive fixed effects. Econometrica 83(4):1543–1579
Mrabet Z, AlSamara M, Hezam Jarallah S (2017) The impact of economic development on environmental degradation in Qatar. Environ Ecol Stat 24(1):7–38
Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA (2015) A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev 43:843–862
Ozturk I, Acaravci A (2013) The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in turkey. Energy Econ 36:262–267
Pesaran MH (2006) Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74(4):967–1012
Pesaran MH, Smith R (1995) Estimating long-run relationships from dynamic heterogeneous panels. J Econometr 68(1):79–113
Pesaran MH, Shin Y, Smith RP (1999) Pooled mean group estimation of dynamic heterogeneous panels. J Am Stat Assoc 94:621
Phillips PCB, Sul D (2007) Transition modeling and econometric convergence tests. Econometrica 75(6):1771–1855
Phillips PCB, Sul D (2009) Economic transition and growth. J Appl Econometr 24(7):1153–1185
Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850
Sadorsky P (2014) The effect of urbanization on CO2 emissions in emerging economies. Energy Econ 41:147–153
Schandl H, Hatfield-Dodds S, Wiedmann T, Geschke A, Cai Y, West J, Newth D, Baynes T, Lenzen M, Owen A (2016) Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. J Clean Prod 132:45–56
Shafiei S, Salim RA (2014) Non-renewable and renewable energy consumption and co 2 emissions in OECD countries: a comparative analysis. Energy Policy 66:547–556
Shirkhorshidi AS, Aghabozorgi S, Wah TY (2015) A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10(12):e0144059
Smyth R, Narayan PK (2015) Applied econometrics and implications for energy economics research. Energy Econ 50:351–358
Strazicich MC, List JA (2003) Are co 2 emission levels converging among industrial countries? Environ Resour Econ 24(3):263–271
Vilar JA, Lafuente-Rego B, D’Urso P (2018) Quantile autocovariances: a powerful tool for hard and soft partitional clustering of time series. Fuzzy Sets Syst 340:38–72
Wang A, Lin B (2017) Assessing CO2 emissions in China’s commercial sector: determinants and reduction strategies. J Clean Prod 164:1542–1552
Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244
World Bank (2015) World development indicators (WDI) database
Wu TH, Chen YS, Shang W, Wu JT (2018) Measuring energy use and CO2 emission performances for APEC economies. J Clean Prod 183:590–601
Zhou WY, Wl Yang, Wan WX, Zhang J, Zhou W, Yang HS, Yang H, Xiao H, Deng SH, Shen F, Wang YJ (2018) The influences of industrial gross domestic product, urbanization rate, environmental investment, and coal consumption on industrial air pollutant emission in China. Environ Ecol Stat 25(4):429–442
