Drifting meio- and macrobenthic invertebrates on tidal flats in Königshafen: A review

Springer Science and Business Media LLC - Tập 48 - Trang 299-320 - 1994
W. Armonies1
1Biologische Anstalt Helgoland, List, Federal Republic of Germany

Tóm tắt

Many benthic species have been recorded to occur in the water column above the tidal flats in Königshafen. They were either passively suspended from the sediment or performed active migrations. Concerning both number of species and organisms, active migrations were more important. The causes for these migrations range from (1) individual escape from a sudden threat such as predator attack, over (2) group evasion of local subpopulations to avoid environmental deterioration, to (3) habitat changing of entire populations. The temporal scales involved range from seconds to seasons, and the spatial scales from cm to km. Such changes of distribution patterns have been demonstrated in juvenile molluscs and in meiofaunal copepods and plathelminths. Since migrations may interfere with many kinds of population studies in the field, new methods and concepts need to be developed to avoid and overcome pittalls. As a precaution, the migration potential of benthic species should be taken into account in any field study including population parameters.

Tài liệu tham khảo

Ambrose, W. G., 1984. Increased emigration of the amphipodRheopoxynius abronius (Barnard) and the polychaeteNephtys caeca (Fabricius) in the presence of invertebrate predators. — J. exp. mar. Biol. Ecol.80, 67–75. Ambrose, W. G., 1986. Experimental analysis of density dependent emigration of the amphipodRheopoxynius abronius. — Mar. Behav. Physiol.12, 209–216. Armonies, W., 1986. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity. — Helgoländer Meeresunters.40, 229–240. Armonies, W., 1988a. Active emergence of meiofauna from intertidal sediment. — Mar. Ecol. Prog. Ser.43, 151–159. Armonies, W., 1988b. Hydrodynamic factors affecting behaviour of intertidal meiobenthos. —Ophelia28, 183–193. Armonies, W., 1988c. Physical factors influencing active emergence of meiofauna from boreal intertidal sediment. — Mar. Ecol. Prog. Ser.49, 277–286. Armonies, W., 1988d. Common pattern of plathelminth abundance in North Sea salt marshes and in the Baltic Sea. — Arch. Hydrobiol.111, 625–636. Armonies, W., 1989a. Occurrence of meiofauna inPhaeocystis seafoam. — Mar. Ecol. Prog. Ser.53, 305–309. Armonies, W., 1989b. Semiplanktonic Plathelminthes in the Wadden Sea. — Mar. Biol.101, 521–527. Armonies, W., 1989c. Meiofaunal emergence from intertidal sediment measured in the field: significant contribution to nocturnal planktonic biomass in shallow waters. — Helgoländer Meeresunters.43, 29–43. Armonies, W., 1990. Short-term changes of meiofaunal abundance in intertidal sediments. —Helgoländer Meeresunters.44, 375–386. Armonies, W., 1992. Migratory rhythms of drifting juvenile molluscs in tidal waters of the Wadden Sea. — Mar. Ecol. Prog. Ser.83, 197–206. Armonies, W., 1994. Turnover of postlarval bivalves in sediments of tidal flats in Königshafen (German Wadden Sea). — Helgoländer Meeresunters.48, 291–297. Armonies, W. & Hartke, D., 1994. Floating of mud snails (Hydrobia ulvae) in tidal waters of the Wadden Sea, and its implications in distribution patterns. — Helgoländer Meeresunters.49. (In press). Armonies, W. & Hellwig-Armonies, M., 1992. Passive settlement ofMacoma balthica spat on tidal flats of the Wadden Sea and subsequent migrations of juveniles. — Neth. J. Sea Res.29, 371–378. Baker, R. R., 1978. The evolutionary ecology of animal migration. Hodder & Stoughton, London, 1012 pp. Bell, S. S., Hicks, G. R. F. & Walters, K., 1988. Active swimming in meiobenthic copepods of seagrass beds: geographic comparisons of abundance and reproductive characteristics. — Mar. Biol.98, 351–358. Beukema, J. J., 1993. Successive changes in distribution patterns as an adaptive strategy in the bivalveMacoma balthica (L.) in the Wadden Sea. — Helgoländer Meeresunters.47, 287–304. Beukema, J. J. & Vlas, J. de, 1979. Population parameters of the lugworm,Arenicola marina, living on tidal flats in the Dutch Wadden Sea. — Neth. J. Sea Res.13, 331–353. Beukema, J. J. & Vlas, J. de, 1989. Tidal-current transport of thread-drifting postlarval juveniles of the bivalveMacoma balthica from the Wadden Sea to the North Sea. — Mar. Ecol. Prog. Ser.52, 193–200. Decho, A. W., 1986. Water-cover influences on diatom ingestion rates by meiobenthic copepods. —Mar. Ecol. Prog. Ser.33, 139–146. Essink, K., Kleef, H. K. & Visser, W., 1989. On the pelagic occurrence and dispersal of the benthic amphipodCorophium volutator. — J. mar. biol. Ass. U.K.69, 11–15. Heip, C., Vincx, M. & Vranken, G., 1985. The ecology of marine nematodes. — Oceanogr. mar. Biol. a. Rev.23, 399–489. Macquart-Moulin, C., 1991. La phase pélagique nocturne des Cumacés. — J. Plankton Res.13, 313–337. Newell, R., 1962. Behavioural aspects of the ecology ofPeringia (=Hydrobia) ulvae (Pennant) (Gastropoda, Prosobranchia). — Proc. zool. Soc. Lond.138, 49–75. Reise, K., 1983. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta. — Helgoländer Meeresunters.36, 151–162. Reise, K., 1985. Tidal flat ecology. Springer, Berlin, 191 pp. Reise, K., 1988. Plathelminth diversity in littoral sediments around the island of Sylt in the North Sea. — Prog. Zool.36, 469–480. Reise, K., 1991. Mosaic cycles in the marine benthos. In: The mosaic-cycle concept of ecosystems. Ed. by H. Remmert. Springer, Berlin, 61–82. Rönn, C., Bonsdorff, E. & Nelson, W. G., 1988. Predation as a mechanism of interference within infauna in shallow water soft bottoms; examples with an infauna predator,Nereis diversicolor O. F. Müller. — J. exp. mar. Biol. Ecol.116, 143–157. Sainte-Marie, B. & Brunel, P., 1985. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. — Mar. Ecol. Prog. Ser.23, 57–69. Sigurdsson, J. B., Titman, C. W. & Davies, P. A., 1976. The dispersal of young post-larval bivalve molluscs by byssus threads. — Nature, Lond.262, 386–387. Thiel, M. & Reise, K., 1993. Interaction of nemertines and their prey on tidal flats. — Neth. J. Sea Res.31, 163–172. Walters, K., 1991. Influence of abundance, behavior, species composition, and ontogenetic stage on active emergence of meiobenthic copepods in subtropical habitats. — Mar. Biol.108, 207–215. Warman, C. G., O'Hare, T. J. & Naylor, E., 1991. Vertical swimming in wave-induced currents as a control mechanism of intertidal migration by a sand-beach isopod. — Mar. Biol.111, 49–54.