Drift estimation for discretely sampled SPDEs

Igor Cialenco1, Francisco Delgado-Vences2, Hyun-Jung Kim1
1Department of Applied Mathematics, Illinois Institute of Technology, Chicago, USA
2Catedra Conacyt and Instituto de Matemáticas, UNAM, Mexico City, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bishwal, J.P.N.: Parameter Estimation in Stochastic Differential Equations. Lecture Notes in Mathematics, vol. 1923. Springer, Berlin (2008)

Bibinger, M., Trabs, M.: On central limit theorems for power variations of the solution to the stochastic heat equation. In: Proceedings in Mathematics and Statistics. Springer (Forthcoming) (2019)

Bibinger, M., Trabs, M.: Volatility estimation for stochastic PDEs using high-frequency observations. In: Stochastic Processes and their Applications (2019). https://doi.org/10.1016/j.spa.2019.09.002

Cheng, Z., Cialenco, I., Gong, R.: Bayesian estimations for diagonalizable bilinear SPDEs. In: Stochastic Processes and their Applications. (Forthcoming) (2019). https://doi.org/10.1016/j.spa.2019.03.020

Cialenco, I., Glatt-Holtz, N.: Parameter estimation for the stochastically perturbed Navier–Stokes equations. Stoch. Process. Appl. 121(4), 701–724 (2011)

Cialenco, I., Gong, R., Huang, Y.: Trajectory fitting estimators for SPDEs driven by additive noise. Stat. Inference Stoch. Process. 21(1), 1–19 (2018)

Cialenco, I., Huang, Y.: A note on parameter estimation for discretely sampled SPDEs. In: Stochastics and Dynamics (2019). https://doi.org/10.1142/S0219493720500161

Chow, P.: Stochastic Partial Differential Equations. Applied Mathematics and Nonlinear Science Series. Chapman & Hall, Boca Raton (2007)

Chong, C.: High-frequency analysis of parabolic stochastic PDEs. arXiv:1806.06959 (2019)

Cialenco, I.: Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21(2), 309–329 (2018)

Cialenco, I., Lototsky, S.V., Pospíšil, J.: Asymptotic properties of the maximum likelihood estimator for stochastic parabolic equations with additive fractional Brownian motion. Stoch. Dyn. 9(2), 169–185 (2009)

Cialenco, I., Xu, L.: Hypothesis testing for stochastic PDEs driven by additive noise. Stoch. Process. Appl. 125(3), 819–866 (2015)

Lototsky, S.V.: Statistical inference for stochastic parabolic equations: a spectral approach. Publ. Mat. 53(1), 3–45 (2009)

Lototsky, S.V., Rozovsky, B.L.: Stochastic Partial Differential Equations. Springer, New York (2017)

Lototsky, S.V., Rozovsky, B.L.: Stochastic Evolution Systems. Linear Theory and Applications to Non-linear Filtering. Probability Theory and Stochastic Modelling, vol. 89, 2nd edn. Springer, New York (2018)

Markussen, B.: Likelihood inference for a discretely observed stochastic partial differential equation. Bernoulli 9(5), 745–762 (2003)

Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus, from Stein’s Method to Universality. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012)

Nualart, D.: The Malliavin Calculus and Related Topics, Probability and Its Applications (New York), 2nd edn. Springer, Berlin (2006)

Piterbarg, L.I., Rozovskii, B.L.: On asymptotic problems of parameter estimation in stochastic PDE’s: discrete time sampling. Math. Methods Stat. 6(2), 200–223 (1997)

Prakasa Rao, B.L.S.: Nonparametric inference for a class of stochastic partial differential equations based on discrete observations. Sankhyā Ser. A 64(1), 1–15 (2002)

Prakasa Rao, B.L.S.: Estimation for some stochastic partial differential equations based on discrete observations. II. Calcutta Stat. Assoc. Bull. 54(215–216), 129–141 (2003)

Pasemann, G., Stannat, W.: Drift estimation for stochastic reaction–diffusion systems. Preprint arXiv:1904.04774v1 (2019)

Pospíšil, J., Tribe, R.: Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl. 25(3), 593–611 (2007)

Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 2, 2nd edn. Springer, New York (1996)

Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001)