Drag coefficients of variously shaped solid particles, drops, and bubbles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clift, R., Grace, J.R., and Weber, M.E., Bubbles, Drops, and Particles, New York: Academic, 1978.
Bird, R., Stewart, W.E., and Lightfoot, E., Transport Phenomena, New York: Wiley, 1960.
Brounshtein, B.I. and Shchegolev, V.V., Gidrodinamika, masso- i teploperenos v kolonnykh apparatakh (Fluid Dynamics and Mass and Heat Transfer in Columns), Leningrad: Khimiya, 1988.
Soo, S.L., Fluid Dynamics of Multiphase Systems, London: Blaisdell, 1970.
Proudman, I. and Pearson, J.R., Expansion at Small Reynolds Number for the Flow past a Sphere and Circular Cylinder, J. Fluid Mech., 1957, vol. 2, p. 237.
Michaelides, E.E., Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer, Singapore: World Science, 2006.
Chester, W. and Breach, D.R., On the Flow past a Sphere at Low Reynolds Numbers, J. Fluid Mech., 1968, vol. 37, no. 4, p. 751.
Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Fluid Dynamics), Moscow: Fizmatgiz, 1962.
Taneda, S., Studies on Wake Vortices. III: Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers, Rep. Res. Inst. Appl. Mech. Kyushu Univ., 1956, vol. 4, p. 99.
Mednikov, E.P., Turbulentnyi perenos i osazhdenie aerozolei (Turbulent Transfer and Aerosol Deposition), Moscow: Nauka, 1980.
Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London: Taylor and Francis, 2002.
Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Englewood Cliffs, N.J.: Prentice-Hall, 1965.
Zapryanov, Z., Tabakova, S., Dynamics of Bubbles, Drops and Rigid Particles, Dortrecht: Kluwer, 1999.
Voloshchuk, V.M. and Sedunov, Yu.S., Protsessy koagulyatsii v dispesnykh sistemakh (Coagulation Processes in Disperse Systems), Leningrad: Gidrometizdat, 1975.
Van Dyke, M., Perturbation Methods in Fluid Mechanics, Stanford, Calif.: Parabolic, 1975.
Pruppacher, H.R. and Steinberger, E.H., An Experimental Determination of the Drag on a Sphere at Low Reynolds Numbers, J. Appl. Phys., 1968, vol. 38, p. 4129.
Hay, K.J., Liu, Z.C., and Hanratty, T.J., Relation of Deposition to Drop Size When the Rate Law Is Nonlinear, Int. J. Multiphase Flow, 1986, vol. 22, p. 829.
Bagchi, P. and Balachandar, B., Effect of Turbulence on the Drag and Lift of a Particle, Phys. Fluids, 2003, vol. 15, no. 11, p. 3496.
Kelbaliyev, G. and Ceylan, K., Development of New Empirical Equations for Estimation of Drag Coefficient, Shape Deformation and Rising Velocity of Gas Bubbles or Liquid Drops, Chem. Eng. Commun., 2007, vol. 194, p. 1623.
Majumder, A.K. and Barnwal, J.P., A Computational Method to Predict Particle Free Terminal Settling Velocity, Indian Mining Eng. J., 2004, vol. 85, p. 17.
Almedeij, J., Drag Coefficient of Flow around a Sphere: Matching Asymptotically the Wide Trend, Powder Technol., 2008, vol. 186, no. 3, p. 218.
Brown, P.P. and Lawler, D.F., Sphere Drag and Settling Velocity Revisited, J. Environ. Eng., 2003, vol. 129, p. 222.
Peria, E., Anta, J., Puertas, J., and Teijero, T., Estimation of Drag Coefficient and Setting Velocity of the Cockle Cenastoderma Edule Using Particle Image Velocimetry, J. Coastal Res., 2008, vol. 24, p. 150.
Flemmer, R.L.C. and Banks, C.L., On the Drag Coefficient of a Sphere, Powder Technol., 1986, vol. 48, p. 217.
Turton, R. and Levenspiel, O.A., A Short Note on the Drag Correlation for Spheres, Powder Technol., 1986, vol. 47, no. 1, p. 83.
Concha, F. and Barrientos, A., Settling Velocities of Particulate Systems. 3. Power-Series Expansions for the Drag Coefficient of a Sphere and Production of the Settling Velocity, Int. J. Miner. Process., 1982, vol. 9, no. 2, p. 167.
Nian-Sheng, Cheng., Comparison of Formulas for Drag Coefficient and Settling Velocity of Spherical Particles, Powder Technol., 2009, vol. 189, no. 3, p. 395.
Gabito, J. and Tsouris, C., Drag Coefficient and Settling Velocity for Particles of Cylindrical Shape, Powder Technol., 2008, vol. 183, no. 2, p. 314.
Kurose, R. and Makino, H., Effect of Outflow from the Surface of a Sphere on Drag, Shear Lift and Scalar Diffusion, Phys. Fluids, 2003, vol. 15, no. 3, p. 2338.
Balduga, J., Henczka, M., Shekunov, B.Y., Fluid Dynamics, Mass Transfer and Particle Formation, in Supercritical Fluid Technology for Drug Product Development, York, P., Kampella, U.B., and Shekunov, B.Y., Eds., New York: Marcel Dekker, 2004, p. 91.
Ceylan, K., Altunbas, A., and Kelbaliyev, G., A New Model for Estimation of Drag Force in the Flow of Newtonian Fluids around Rigid of Deformable Particles, Powder Technol., 2001, vol. 119, p. 250.
Kutateladze, S.S., Teploperedacha i gidrodinamicheskoe soprotivlenie (Heat Transfer and Drag), Moscow: Energoatomizdat, 1990.
Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym dloem (Hydraulic and Thermal Principles of Operation of Fixed- and Fluidized-Bed Apparatuses), Leningrad: Khimiya, 1968.
Kondrat’ev, A.S. and Naumova, E.A., Calculation of the Velocity of Free Settling of Solid Particles in a Newtonian fluid, Teor. Osn. Khim. Tekhnol., 2003, vol. 37, no. 6, p. 646 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 37, no. 6, p. 606].
Milne-Thompson, L., Theoretical Hydrodynamics, London: Chapman and Hall, 1960.
Statie, E., Salcudean, M., Gartshore, I., and Bibeau, E., A Computational Study of Particles Separation in Hydrocyclones, J. Pulp Paper Sci., 2002, vol. 38, p. 84.
Chien, S.F., Settling Velocity of Irregularly Shaped Particles, Proc. 69th Annual Technical Conf. and Exhibition, New Orleans, 1994.
Haider, A. and Levenspiel, O., Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles, Powder Technol., 1989, vol. 58, p. 63.
Ganser, G.A., A Rational Approach to Drag Prediction of Spherical and Nonspherical Particles, Powder Technol., 1993, vol. 77, p. 143.
White, F.M., Viscous Flow, New York: McGraw-Hill, 2006, 3rd ed.
Yin, C., Rosedae, L., Kaer, S.K., and Sorenson, H., Modeling the Motion of Cylindrical Particles in Nonuniform Flow, Chem. Eng. Sci., 2003, vol. 58, p. 3489.
Taylor, T. and Acrivos, A., On the Deformation and Drag of a Falling Drop at Low Reynolds Number, J. Fluid Mech., 1964, vol. 18, p. 466.
Ockendon, J.R. and Evans, G.A., The Drag on a Sphere in Low Reynolds Number Flow, J. Aerosol Sci., 1972, vol. 3, no. 4, p. 237.
LeClair, B.P., Hamielek, A.E., and Pruppacher, H.R., A Numerical Study of the Drag on a Sphere at Low Reynolds Numbers, J. Atmos. Sci., 1970, vol. 27, p. 308.
Bhaga, D. and Weber, M.E., Bubbles in Viscous Liquids: Shape, Wakes and Velocities, J. Fluid Mech., 1981, vol. 105, p. 61.
Bozzano, G. and Dente, M., Shape and Velocity of Single Bubbles Motion: A Novel Approach, Comput. Chem. Eng., 2001, vol. 25, p. 571.
Grace, J.R., Hydrodynamics of Liquid Drops in Immiscible Liquids, Handbook of Fluids in Motion, Cheremisinoff, N.P. and Gupta, E., Eds., Ann Arbor, Mich.: Ann Arbor Science, 1983 p. 273.
Helenbrook, B.T. and Edwards, C.F., Quasi-Steady Deformation and Drag of Contaminated Liquid Drops, Int. J. Multiphase Flow, 2002, vol. 28, p. 1631.
Maxworty, T., Grann, C., Kurten, M., Durst, F., Experiments on the Rise of Air Bubbles in Clean Viscous Liquids, J. Fluid Mech., 1996, vol. 321, p. 421.
Sajjadi, S., Zerfa, M., and Brooks, B.M., Dynamic Behaviors of Drops in Oil/Water Dispersion, Chem. Eng. Sci., 2002, vol. 57, p. 663.
Chabra, R.P., Bubbles, Drops, and Particles in Non-Newtonian Fluids, Boca Raton, Fla.: CRC, 2007.
Rodi, W. and Fueyo, N., Engineering Turbulence Modeling and Experiments, Proc. 5th Int. Symp. on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 2002.
Fenn, Z.G. and Michaelides, E.E., Heat and Mass Transfer Coefficient of Viscous Spheres, Int. J. Heat Mass Transfer, 2001, vol. 44, no. 23, p. 4445.
Raymond, F. and Rozant, J.M., A Numerical and Experimental Study of the Terminal Velocity and Shape of Bubbles in Viscous Liquids, Chem. Eng. Sci., 2000, vol. 55, p. 943.
Sis, H., Kelbaliyev, G., and Chander, S., Kinetics of Drop Breakage in Stirred Vessels under Turbulent Conditions, J. Dispersion Sci. Technol., 2005, vol. 26, p. 566.
Harmathy, T.Z., Velocity of Large Drops and Bubbles in Media of Infinite or Restricted Extent, AIChE J., 1960, vol. 6, no. 2, p. 281.
Wellek, R.M., Angrawal, A.K., and Skelland, A.H., Shape of Liquid Drops Moving in Liquid Media, AIChE J., 1966, vol. 12, p. 854.
Sherman, Ph., Emulsion Science, London: Academic, 1968.
Sarimeseli, A. and Kelbaliyev, G., Modeling of the Break-Up of Deformable Particles in Turbulent Flow, Chem. Eng. Sci., 2004, vol. 59, p. 1233.
Haberman, W.L. and Morton, R.K., An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids, D.W. Taylor Model Basin Report, Department of the Navy, Washington, DC, 1953. vol. 802.
Hovenkamp, B., Investigation of Porous Media Flow with Regard to the Emulsion Science, Doctoral (Eng.) Dissertation, Swiss Federal Inst. of Technology, Zurich, 2002.
Kelbaliev, G.I. and Ibragimov, Z.I., Coalescence and Fragmentation of Drops in an Isotropic Turbulent Flow, Teor. Osn. Khim. Tekhnol., 2009, vol. 43, no. 3, p. 16 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 43, no. 3, p. 314].
Chia-Shun, Yih., Advances in Applied Mechanics, New York: Academic, 1972.
Crowe, C.T., Multiphase Flow Handbook, Boca Raton, Fla.: CRC, Taylor and Francis Group, 2006.
Clift, K.A. and Lever, D.A., Isothermal Flow past a Blowing Sphere, Int. J. Numer. Methods Fluids, 1985, vol. 5, p. 709.
Karamanev, D.G., Equation for Calculation of the Terminal Velocity and Drag Coefficient of Solid Spheres and Gas Bubbles, Chem. Eng. Commun., 1996, vol. 147, p. 73.
Dewsbury, K.H., Karamanev, D.G., and Margaritis, A., Rising Solid Hydrodynamics at High Reynolds Numbers in Non-Newtonian Fluids, Chem. Eng. Sci., 2002, vol. 87, p. 120.
Chabra, R.P. and Richardson, J.F., Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering, Oxford: Butterworth-Heinemann, 1999.
Ceylan, K., Herdem, S., and Abbasov, T., A Theoretical Model for Estimation of Drag Force in the Flow of Non-Newtonian Fluids around Solid spherical Particles, Powder Technol., 1999, vol. 103, p. 286.
Shul’man, Z.P. and Berkovskii, B.M., Pogranichnyi sloi nen’yutonovskikh zhidkostei (Boundary Layer in Non-Newtonian fluids), Minsk: Nauka i Tekhnika, 1966.
Dewsbury, K., Karamanev, D.G., and Margaritis, S.A., Hydrodynamic Characteristics of Free Rise of Light Solid Particles and Gas Bubbles in Non-Newtonian fluids, Chem. Eng. Sci., 1999, vol. 54, p. 4825.
Kelessids, V.C., An Explicit Equation for the Terminal Velocity of Solid Spheres Falling in Pseudoplastic Liquids, Chem. Eng. Sci., 2004, vol. 59, p. 4437.
Miura, H., Takahachi, T., and Ichikawa, K., Bed Expansion in Liquid-Solid Two-Phase Fluidized Beds with Newtonian and Non Newtonian Fluids over the Wide Range of Reynolds Numbers, Powder Technol., 2001, vol. 117, p. 239.
Pinelli, D. and Magelli, F., Solids Falling and Distribution in Slurry Reactors with Dilute Pseudoplastic Suspension, Ind. Eng. Chem. Res., 2001, vol. 40, p. 4456.
Hirose, T. and Moo-Yung, M., Bubble Drag and Mass Transfer in Non-Newtonian Fluids: Creeping Flow with Power-Law Fluids, Can. J. Chem. Eng., 1969, vol. 47, no. 3, p. 265.
Loitsyanskii, L.G., Mechanics of Liquids and Gases, Oxford: Pergamon, 1966.
Bricato, A., Ciofalo, M., Grisafi, F., and Micale, G., Numerical Prediction of Flow Fields in Baffled Stirred Vessels, Chem. Eng. Sci., 1998, vol. 53, no. 21, p. 3653.
Tropea, C., Yarin, A.L., and Foss, J.F., Springer Handbook of Experimental Fluid Mechanics, New York: Springer, 2007.
Ceylan, K. and Kelbaliyev, G., The Roughness Effect on Friction and Heat Transfer in the Fully Developed Turbulent Flow, Appl. Therm. Eng., 2003, vol. 23, p. 557.
Altunbas, A., Kelbaliyev, G., and Ceylan, K., Eddy Diffusivity of Particles in Turbulent Flow in Rough Channels, J. Aerosol Sci., 2002, vol. 33, p. 1075.