Draft genomes of Cronobacter sakazakii strains isolated from dried spices bring unique insights into the diversity of plant-associated strains

Standards in Genomic Sciences - Tập 13 - Trang 1-16 - 2018
Hyein Jang1, Jungha Woo1, Youyoung Lee1, Flavia Negrete1, Samantha Finkelstein1, Hannah R. Chase1, Nicole Addy1, Laura Ewing1, Junia Jean Gilles Beaubrun1, Isha Patel1, Jayanthi Gangiredla1, Athmanya Eshwar2, Ziad W. Jaradat3, Kunho Seo4, Srikumar Shabarinath5,6, Séamus Fanning5,6, Roger Stephan2, Angelika Lehner2, Ben D. Tall1, Gopal R. Gopinath1
1Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, USA
2Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
3Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
4Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
5UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College, Dublin, Ireland
6WHO Collaborating Centre for Cronobacter, Dublin 4, Ireland

Tóm tắt

Cronobacter sakazakii is a Gram-negative opportunistic pathogen that causes life- threatening infantile infections, such as meningitis, septicemia, and necrotizing enterocolitis, as well as pneumonia, septicemia, and urinary tract and wound infections in adults. Here, we report 26 draft genome sequences of C. sakazakii, which were obtained from dried spices from the USA, the Middle East, China, and the Republic of Korea. The average genome size of the C. sakazakii genomes was 4393 kb, with an average of 4055 protein coding genes, and an average genome G + C content of 56.9%. The genomes contained genes related to carbohydrate transport and metabolism, amino acid transport and metabolism, and cell wall/membrane biogenesis. In addition, we identified genes encoding proteins involved in osmotic responses such as DnaJ, Aquaproin Z, ProQ, and TreF, as well as virulence-related and heat shock-related proteins. Interestingly, a metabolic island comprised of a variably-sized xylose utilization operon was found within the spice-associated C. sakazakii genomes, which supports the hypothesis that plants may serve as transmission vectors or alternative hosts for Cronobacter species. The presence of the genes identified in this study can support the remarkable phenotypic traits of C. sakazakii such as the organism’s capabilities of adaptation and survival in response to adverse growth environmental conditions (e.g. osmotic and desiccative stresses). Accordingly, the genome analyses provided insights into many aspects of physiology and evolutionary history of this important foodborne pathogen.

Tài liệu tham khảo

Tall BD, Chen Y, Yan QQ, Gopinath GR, Grim CJ, Jarvis KG, Fanning S, Lampel KA. Cronobacter: an emergent pathogen a using meningitis to neonates through their feeds. Sci Prog. 2014;97:154–72. https://doi.org/10.3184/003685014X13994743930498. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. Cronobacter gen. Nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. Nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1 and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol. 2008;58:1442–7. https://doi.org/10.1099/ijs.0.65577-0. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol. 2012;62:1277–83. https://doi.org/10.1099/ijs.0.032292-0. Hunter CJ, Petrosyan M, Ford HR, Prasadarao NV. Enterobacter sakazakii: an emerging pathogen in infants and neonates. Surg Infect. 2008;9:533–9. https://doi.org/10.1089/sur.2008.006. Holý O, Petrželová J, Hanulík V, Chromá M, Matoušková I, Forsythe SJ. Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc University hospital (Czech Republic). Epidemiol Mikrobiol Imunol. 2014;63:69–72. Alsonosi A, Hariri S, Kajsík M, Oriešková M, Hanulík V, Röderová M, Petrželová J, Kollárová H, Drahovská H, Forsythe S, Holý O. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis. 2015;34:1979–88. https://doi.org/10.1007/s10096-015-2440-8. Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis. 2014;20:1520–3. Himelright I, Harris E, Lorch V, Anderson M, Jones T, Craig A, Kuehnert M, Forster T, Arduino M, Jensen B, Jernigan D. Enterobacter sakazakii infections associated with the use of powdered infant formula–Tennessee, 2001. Morb Mortal Wkly Rep. 2002;51:297–300. Jason J. Prevention of invasive Cronobacter infections in young infants fed powdered infant formulas. Pediatrics. 2012;130:e1076–84. FAO/WHO. Enterobacter sakazakii and other micro-organisms in powdered infant formula: meeting report, Microbiological Risk Assessment Series. Rome; 2004. p. 6. http://www.fao.org/3/a-y5502e.pdf. Noriega FR, Kotloff KL, Martin MA, Schwalbe RS. Nosocomial bacteremia caused by Enterobacter sakazakii and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatric Infect Dis J. 1990;9:447–9. Berthold-Pluta A, Garbowska M, Stefańska I, Pluta A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol. 2017;65:221–30. https://doi.org/10.1016/j.fm.2017.03.005. Sani NA, Odeyemi OA. Occurrence and prevalence of Cronobacter spp. in plant and animal derived food sources: a systematic review and meta-analysis. Springerplus. 2015;4:545. https://doi.org/10.1186/s40064-015-1324-9. Lou X, Si G, Yu H, Qi J, Liu T, Fang Z. Possible reservoir and routes of transmission of Cronobacter (Enterobacter sakazakii) via wheat flour. Food Control. 2014;43:258–62. https://doi.org/10.1016/j.foodcont.2014.03.029. Kandhai MC, Heuvelink AE, Reij MW, Beumer RR, Dijk R, van Tilburg JJHC, van Schothorst M, Gorris LGM. A study into the occurrence of Cronobacter spp. in the Netherlands between 2001 and 2005. Food Control. 2010;21:1127–36. https://doi.org/10.1016/j.foodcont.2010.01.007. Chase HR, Eberl L, Stephan R, Jeong H, Lee C, Finkelstein S, Negrete F, Gangiredla J, Patel I, Tall BD, Gopinath GR, Lehner A. Draft genome sequence of Cronobacter sakazakii GP1999, sequence type 145, an epiphytic isolate obtained from the tomato’s rhizoplane/rhizosphere continuum. Genome Announc. 2017;5:e00723–17. https://doi.org/10.1128/genomeA.00723-17. Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A. Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol. 2009;160:608–14. https://doi.org/10.1016/j.resmic.2009.08.013. Gopinath GR, Chase HR, Gangiredla J, Eschwar A, Jang H, Patel I, Negrete F, Finkelstein S, Park E, Chung T, Yoo Y, Woo J, Lee Y, Park J, Choi H, Jeong S, Jun S, Kim M, Lee C, Jeong H, Fanning S, Stephan R, Iversen C, Reich F, Klein G, Lehner A, Tall BD. Genomic characterization of malonate positive Cronobacter sakazakii serotype O:2, sequence type 64 strains, isolated from clinical, food, and environment samples. Gut Pathogens. 2017;10:11. https://doi.org/10.1186/s13099-018-0238-9. Jang H, Addy N, Ewing L, Beaubrun JJG, Lee Y, Woo J, Negrete F, Finkelstein S, Tall BD, Lehner A, Eshwar A, Gopinath GR. Whole genome sequences of Cronobacter sakazakii isolates obtained from plant-origin foods and dried food manufacturing environments. Genome Announc. 2018;6:e00223-18. https://doi.org/10.1128/genomeA.00223-18. Jaradat ZW, Ababneh QO, Saadoun IM, Samara NA, Rashdan AM. Isolation of Cronobacter spp. (formerly Enterobacter sakazakii) from infant food, herbs and environmental samples and the subsequent identification and confirmation of the isolates using biochemical, chromogenic assays, PCR and 16S rRNA sequencing. BMC Microbiol. 2009;9:225. https://doi.org/10.1186/1471-2180-9-225. Chon JW, Song KY, Kim SY, Hyeon JY, Seo KH. Isolation and characterization of Cronobacter from desiccated foods in Korea. J Food Sci. 2012;77:M354–8. https://doi.org/10.1111/j.1750-3841.2012.02750.x. Urmenyi AMC, Franklin AW. Neonatal death from pigmented coliform infection. Lancet. 1961;277:313–5. https://doi.org/10.1016/S0140-6736(61)91481-7. Farmer IIIJJ, Asbury MA, Hickman FW, Brenner DJ, the Enterobacteriaceae Study Group. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol. 1980;30:569–84. Breeuwer P, Lardeau A, Peterz M, Joosten HM. Desiccation and heat tolerance of Enterobacter sakazakii. J Appl Microbiol. 2003;95:967–73. https://doi.org/10.1046/j.1365-2672.2003.02067.x. Shaker RR, Osaili TM, Abu Al-Hasan AS, Ayyash MM, Forsythe SJ. Effect of desiccation, starvation, heat, and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. J Food Sci. 2008;73:M354–9. https://doi.org/10.1111/j.1750-3841.2008.00880.x. Osaili T, Forsythe S. Desiccation resistance and persistence of Cronobacter species in infant formula. Int J Food Microbiol. 2009;136:214–20. https://doi.org/10.1016/j.ijfoodmicro.2009.08.006. Walsh D, Molloy C, Iversen C, Carroll J, Cagney C, Fanning S, Duffy G. Survival characteristics of environmental and clinically derived strains of Cronobacter sakazakii in infant milk formula (IMF) and ingredients. J Appl Microbiol. 2011;110:697–703. https://doi.org/10.1111/j.1365-2672.2010.04921.x. Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol. 2013;4:256. https://doi.org/10.3389/fmicb.2013.00256. Lehner A, Tall BD, Fanning S, Shabarinath S. Cronobacter spp. – opportunistic foodborne pathogens: an update on evolution, osmotic adaptation and pathogenesis. Curr Clin Micro Rpt. 2018. https://doi.org/10.1007/s40588-018-0089-7. Srikumar S, Cao Y, Yan Q, Van Hoorde K, Nguyen S, Cooney S, Gopinathrao GR, Tall BD, Sivasankaran SK, Lehner A, Stephan R, Fanning S. RNA sSequencing based transcriptional overview of xerotolerance in Cronobacter sakazakii. Appl.Environ Microbiol. 2018.https://doi.org/10.1128/AEM.01993-18. [Epub ahead of print]. Forsythe SJ. Updates on the Cronobacter genus. Annu Rev Food Sci Technol. 2018;9:22–44. Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol. 2012;50:3031–9. https://doi.org/10.1128/JCM.00905-12. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. https://doi.org/10.1186/1471-2105-11-595. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7. https://doi.org/10.1038/nbt1360. Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA, Jarvis KG, Yan QQ, Jackson SA, Sathyamoorthy V, Hu L, Pagotto F, Iversen C, Lehner A, Stephan R, Fanning S, Tall BD. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 2013;14:366. https://doi.org/10.1186/1471-2164-14-366. Chase HR, Gopinath GR, Eshwar AK, Stoller A, Fricker-Feer C, Gangiredla J, Patel IR, Cinar HN, Jeong H, Lee C, Negrete F, Finkelstein S, Stephan R, Tall BD, Lehner A. Comparative genomic characterization of the highly persistent and potentially virulent Cronobacter sakazakii ST83, CC65 strain H322 and other ST83 strains. Front Microbiol. 2017;8:1136. https://doi.org/10.3389/fmicb.2017.01136. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. https://doi.org/10.1186/1471-2164-9-75. Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, Timme R. Practical value of food pathogen traceability through building a whole genome sequencing network and database. J Clin Microbiol. 2016;54:1975–83. https://doi.org/10.1128/JCM.00081-16. Allard MW, Bell R, Ferreira CM, Gonzalez-Escalona N, Hoffmann M, Muruvanda T, Ottesen A, Ramachandran P, Reed E, Sharma S, Stevens E, Timme R, Zheng J, Brown EW. Genomics of foodborne pathogens for microbial food safety. Curr Opin Biotechnol. 2018;49:224–9. https://doi.org/10.1016/j.copbio.2017.11.002. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93. https://doi.org/10.1093/nar/gkv1248. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, Lee C, Sadowski J, Kim J, Kothary MH, McCardell BA, Tall BD. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 2011;77:3255–67. https://doi.org/10.1128/AEM.03023-10. Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 2010;5:e9556. https://doi.org/10.1371/journal.pone.0009556. Power KA, Yan Q, Fox EM, Cooney S, Fanning S. Genome sequence of Cronobacter sakazakii SP291, a persistent thermotolerant isolate derived from a factory producing powdered infant formula. Genome Announc. 2013;1:e0008213. https://doi.org/10.1128/AEM.03023-10. García-Calderón CB, Casadesús J, Ramos-Morales F. Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol. 2007;189(18):6635–44. Stephan R, Lehner A, Tischler P, Rattei T. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol. 2011;193:309–10. https://doi.org/10.1128/JB.01162-10. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8. https://doi.org/10.1093/bioinformatics/btv271. Bontemps-Gallo S, Lacroix JM. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. Environ Microbiol Rep. 2015;7:690–7. https://doi.org/10.1111/1758-2229.12325. Walker G, Hertle R, Braun V. Activation of Serratia marcescens hemolysin through a conformational change. Infect Immun. 2004;72:611–4. Cruz A, Xicohtencatl-Cortes J, González-Pedrajo B, Bobadilla M, Eslava C, Rosas I. Virulence traits in Cronobacter species isolated from different sources. Can J Microbiol. 2011;57:735–44. https://doi.org/10.1139/w11-063. Gunn JS, Alpuche-Aranda CM, Loomis WP, Belden WJ, Miller SI. Characterization of the Salmonella typhimurium pagC/pagD chromosomal region. J Bacteriol. 1995;177:5040–7. https://jb.asm.org/content/177/17/5040.long. Olofsson K, Bertilsson M, Lidén G. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7. https://doi.org/10.1186/1754-6834-1-7. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, Murakami MT. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. J Biol Chem. 2014;289:32186–200. https://doi.org/10.1074/jbc.M114.605105. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29. https://doi.org/10.1111/j.1364-3703.2012.00804.x. Luo Y, Zhang T, Wu H. The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv. 2014;32:905–19. https://doi.org/10.1016/j.biotechadv.2014.04.009. Carter MQ, Xue K, Brandl MT, Liu F, Wu L, Louie JW, Mandrell RE, Zhou J. Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation. PLoS One. 2012;7:e44186. https://doi.org/10.1371/journal.pone.0044186. Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front Microbiol. 2016;7:1088. https://doi.org/10.3389/fmicb.2016.01088. de Castro SS, de Castro OL, Jaiswal AK, Azevedo V. Genomic Islands: an overview of current software tools and future improvements. J Integ Bioinform. 2016;13:301. https://doi.org/10.2390/biecoll-jib-2016-301. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33:376–93. https://doi.org/10.1111/j.1574-6976.2008.00136.x. Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ. Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol. 2004;56:15–27. https://doi.org/10.1007/s11103-004-3096-4. Chen Y, Lampel K, Hammack T, U.S. FDA. Bacteriological analytical manual. Chapter 29. In: Cronbacter; 2012. https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm289378.htm. Chen Y, Noe KE, Thompson S, Elems CA, Brown EW, Lampel KA, Hammack TS. Evaluation of a revised U.S. Food and Drug Administration method for the detection of Cronobacter in powdered infant formula: a collaborative study. J Food Prot. 2012;75:1144–7. https://doi.org/10.4315/0362-028X.JFP-11-388. International Organization for Standardization (ISO). Microbiology of the food chain – horizontal method for the detection of Cronobacter spp. ISO/TS 22964:2017. https://www.iso.org/standard/64708.html. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. https://doi.org/10.1093/oxfordjournals.molbev.a040454. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030–5. https://doi.org/10.1073/pnas.0404206101. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. https://doi.org/10.1093/molbev/msw054. Felsenstein J. Confidence limits on phylogenies: an approach using bootstrap. Evolution. 1985;39:783–91. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.