Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile

Standards in Genomic Sciences - Tập 11 - Trang 1-7 - 2016
Francisco Issotta1, Pedro A. Galleguillos2,3, Ana Moya-Beltrán1, Carol S. Davis-Belmar4, George Rautenbach4, Paulo C. Covarrubias1,5, Mauricio Acosta2, Francisco J. Ossandon1, Yasna Contador2, David S. Holmes1,5, Sabrina Marín-Eliantonio2, Raquel Quatrini1,5, Cecilia Demergasso2,3
1Fundación Ciencia & Vida, Santiago, Chile
2Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, Antofagasta, Chile
3Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
4BHP Billiton Chile, Santiago, Chile
5Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile

Tóm tắt

Leptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod-shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.

Tài liệu tham khảo

Daims H. 59 The Family Nitrospiraceae. In: Rosenberg, Eugene DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Other Major Lineages of Bacteria and The Archaea. Fourthth ed. Berlin Heidelberg: Springer; 2014. Harrison Jr AP, Norris PR. Leptospirillum ferrooxidans and similar bacteria: some characteristics and genomic diversity. FEMS Microbiol Lett. 1985. http://www.sciencedirect.com/science/article/pii/0378109785903726. Sand W, Rhode K, Sobotke B, Zenneck C. Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol. 1992. PMC http://www.ncbi.nlm.nih.gov/pmc/articles/PMC195176/ Bond PL, Banfield JF. Design and Performance of rRNA Targeted Oligonucleotide Probes for in Situ Detection and Phylogenetic Identification of Microorganisms Inhabiting Acid Mine Drainage Environments. Microb Ecol. 2001. http://link.springer.com/article/10.1007%2Fs002480000063. Coram NJ, Rawlings DE. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol. 2002. http://dx.doi.org/10.1128/AEM.68.2.838-845.2002. Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol. 2005. http://dx.doi.org/10.1128/AEM.71.10.6319-6324.2005. Aliaga-Goltsman DS, Dasari M, Thomas BC, Shah MB, VerBerkmoes NC, Hettich RL, Banfield JF. New group in the Leptospirillum Clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species “Leptospirillum Group IV UBA BS”. Appl Environ Microbiol. 2013. http://dx.doi.org/10.1128/AEM.00202-13. Demergasso CS, Galleguillos PA, Escudero LV, Zepeda VJ, Castillo D, Casamayor E. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy. 2005. http://dx.doi.org/10.1016/j.hydromet.2005.07.013. Demergasso CS, Galleguillos F, Soto P, Serón M, Iturriaga V. Microbial succession during a heap bioleaching cycle of low-grade copper sulfides: does this knowledge mean a real input for industrial process design and control? Hydrometallurgy. 2010. http://dx.doi.org/10.1016/j.hydromet.2010.04.016. Galleguillos PA, Hallberg KB, Johnson DB. Microbial diversity and genetic response to stress conditions of extremophilic bacteria isolated from the Escondida copper mine. Adv Mater Res. 2009. http://dx.doi.org/10.4028/www.scientific.net/AMR.71-73.55. Davis-Belmar CS, Cautivo D, Demergasso C, Rautenbach G. Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture. Hydrometallurgy 2014. http://dx.doi.org/10.1016/j.hydromet.2014.09.013. Rautenbach GF, Davis-Belmar CS, Demergasso CS. A method of treating a sulphide mineral. Patent publication number CA2728924 C, 8 Apr 2014, Chile. Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012. http://dx.doi.org/10.1126/science.1218389. Wilmes P, Remis JP, Hwang M, Auer M, Thelen MP, Banfield JF. Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J. 2009. http://dx.doi.org/10.1038/ismej.2008.90. Cárdenas JP, Lazcano M, Ossandon FJ, Corbett M, Holmes DS, Watkin E. Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum Type strain DSM 14647. Genome Announc. 2014. http://dx.doi.org/10.1128/genomeA.01153-14. Mi S, Song J, Lin J, Che Y, Zheng H, Lin J. Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol. 2011. http://dx.doi.org/10.1007/s12275-011-1099-9. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428(6978):37–43. http://www.nature.com/nature/journal/v428/n6978/full/nature02340.html. Simmons SL, DiBartolo G, Denef VJ, Aliaga-Goltsman DS, Thelen MP, Banfield JF. Population genomic analysis of strain variation in Leptospirillum Group II bacteria involved in acid mine drainage formation. PLoS Biology. 2008. http://dx.doi.org/10.1371/journal.pbio.0060177. Aliaga-Goltsman DS, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zelma A, Baker BJ, Hauser L, Land M, Shah MB, Thelen MP, Hettich RL, Banfield JF. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing Leptospirillum rubarum (Group II) and Leptospirillum ferroziazotrophum (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol. 2009. http://dx.doi.org/10.1128/AEM.02943-08. Galleguillos PA, Demergasso CS, Johnson DB, Quatrini R, Holmes DS, Hallberg KB. Identification and analysis of diazotrophy in strains of Leptospirillum ferriphilum from heap bioleaching operations. Changsha, China: Biohydrometallurgy 2011: Biotech key to unlock Mineral Resources value, Proceedings of the 19th International Biohydrometallurgy Symposium; 2011. Galleguillos PA, Music V, Acosta M, Salazar C, Quatrini R, Shmaryahu A, Holmes D, Velasquez A, Espoz C, Pinilla C, Demergasso CS. Temporal dynamics of genes involved in metabolic pathways of C and N of L. ferriphilum in the industrial bioleaching process of Escondida mine, Chile. Adv Mater Res. 2013. http://dx.doi.org/10.4028/www.scientific.net/AMR.825.162. Arias DN. Efecto del aumento de la concentración de sulfato de magnesio sobre la expresión de proteínas de la bacteria biolixiviante Leptospirillum ferriphilum. Chile: Tesis para optar al Título Profesional de Bioquímico, año 2013, Facultad de Ciencias de la Salud, Universidad de Antofagasta; 2013. 115. Liddicoat J, Dreisinger D. Chloride leaching of chalcopyrite. Hydrometallurgy. 2007. http://dx.doi.org/10.1016/j.hydromet.2007.08.004. Leptospirillum ferriphilum strain Sp-Cl, whole genome shotgun sequencing project. Gene bank accession: http://www.ncbi.nlm.nih.gov/nuccore/LGSH00000000. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008. http://www.nature.com/nbt/journal/v26/n5/full/nbt1360.html. Johnson DB. Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods. 1995;23(2):205–18. http://www.sciencedirect.com/science/article/pii/016770129500015D. Droege M, Hill B. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol. 2008. http://dx.doi.org/10.1016/j.jbiotec.2008.03.021. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007. http://dx.doi.org/10.1093/bioinformatics/btm009. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014. http://dx.doi.org/10.1093/nar/gkt1226. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucl. Acids Res. 2004. http://dx.doi.org/10.1093/nar/gkh152. Huang Y, Gilna P, Li W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics. 2009. http://dx.doi.org/10.1093/bioinformatics/btp161. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011. http://dx.doi.org/10.1038/nmeth.1701. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001. http://dx.doi.org/10.1006/jmbi.2000.4315. Chandra G, Chater KF, Bornemann S. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiol. 2011. doi:10.1099/mic.0.044263-0. Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol. 2013. doi:10.1111/1751-7915.12029. Pan Y, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD. Trehalose synthase converts glycogen to trehalose. FEBS J. 2008. doi:10.1111/j.1742-4658.2008.06491.x. Parro V, Moreno-Paz M, González-Toril E. Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol. 2007. doi:10.1111/j.1462-2920.2006.01162.x. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. Bergey’s Manual of Systematic Bacteriology. 2001;1:155–66. Hippe H. 2000. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol. 2000. http://dx.doi.org/10.1099/00207713-50-2-501. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000. http://www.nature.com/ng/journal/v25/n1/abs/ng0500_25.html.