Doubly Weighted Estimation Approach for Linear Regression Analysis with Two-stage Cluster Samples

Springer Science and Business Media LLC - Tập 86 Số 1 - Trang 55-90 - 2024
Brajendra C. Sutradhar1
1Memorial University, St. John's, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge.

Binder, D. A. (1983). On the variances of asymptotic normal estimators from complex surveys. Int. Stat. Rev., 51, 279–292

Burdick, R. K. and Sielken R.L. Jr. (1979). Variance estimation based on superpopulation model in two-stage sampling. J. Am. Soc. Stat. Assoc., 74 438–440.

Christensen, R. (1984). A note on ordinary least squares methods for two-stage sampling. J. Am. Stat. Assoc., 79, 720–721

Christensen, R. (1987). The analysis of two-stage sampling data by ordinary least squares. J. Am. Stat. Assoc., 82, 492–498

Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons: New York.

Fuller, W. A. (2002). Regression estimation for survey samples. Surv. Methodol., 28, 5–23.

Fuller, W. A. (2009). Sampling Statistics. John Wiley & Sons: New York.

Ghosh, M. (1991). Estimating Functions in Survey Sampling : A Review. In Estimating Functions, (V. P. Godambe, ed.). Oxford Science Publications, 201–210.

Godambe, V. P. and Thompson M.E. (1986). Parameters of super-population and survey population: Their relationships and estimation. Int. Stat. Rev., 54, 127–138.

Isaki, C. T. and Fuller W.A. (1982). Survey design under the regression super-population model. J. Am. Stat. Assoc., 77, 89–96

Kaufmann, H. (1987) Regression models for non-stationary categorical time series: Asymptotic estimation theory. Ann. Stat., 15, 79–98

Lee, S. E., Lee P.R. and Shin K. (2016). A composite estimator for stratified two stage cluster sampling. Commun. Stat. Appl. Methods, 23, 47–55

Lehtonen, R., and Veijanen A. (1998). Logistic generalized regression estimators. Surv. Methodol., 24, 51–55

Little, R. J. A. (1983). Estimating a finite population mean from unequal probability samples. J. Am. Stat. Assoc., 78, 596–604

Mardia, K. V., Kent J.T. and Bibby J.M. (1979). Multivariate Analysis. Academic Press, London.

Mcdonald, D. R. (2005). The local limit theorem: A historical perspective. J. Iran. Stat. Soc., 4, 73–86

Mukhopadhyay, P. (1993). Estimation of a finite population total under regression models: A review. Sankhya B., 55, 141–155

Prasad, N. G. N. and Rao J.N.K. (1990). The estimation of the mean squared error of small-area estimators. J. Am. Stat. Assoc., 85, 163–171

Rao, J. N. K., Sutradhar B.C. and Yue K. (1993). Generalized least squares F test in regression analysis with two-stage cluster samples. J. Am. Stat. Assoc., 88, 1388–1391

Royal, R. M. (1976). The linear least-squares prediction approach to two-stage sampling. J. Am. Stat. Assoc., 71, 657–664

Seber, G. A. F. (1984). Multivariate Observations. John Wiley & Sons: New York.

Scott, A. J. and Holt, D. (1982). The effect of two-stage sampling on ordinary least squares methods. J. Am. Stat. Assoc., 77, 848–854.

Scott, A. J. and Smith T.M.F. (1969). Estimation in multi-stage surveys. J. Am. Stat. Assoc., 64, 830–840

Skinner, C. J. and Vieira M.D.T. (2007). Variance estimation in the analysis of clustered longitudinal survey data. Surv. Methodol., 33, 3–12

Sutradhar, B. C. (2008). Inferences in familial Poisson mixed models for survey data. Sankhya B, 70, 18–33

Valliant, R. (1985). Nonlinear prediction theory and the estimation of proportions in a finite population. J. Am. Stat. Assoc., 80, 631–641

Valliant, R. (1987). Generalized variance functions in stratified two-stage sampling. J. Am. Stat. Assoc., 82, 499–508