Double network hydrogels with extremely high toughness and their applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arakaki K., N. Kitamura, H. Fujiki, T. Kurokawa, M. Iwamoto, M. Ueno, F. Kanaya, Y. Osada, J.P. Gong, and K. Yasuda, 2010, Artificial cartilage made from a novel double-network hydrogel: In vivo effects on the normal cartilage and ex vivo evaluation of the friction property, Journal of Biomedical Materials Research 93A, 1160–1168.
Azuma, C., K. Yasuda, Y. Tanabe, H. Taniguro, F. Kanaya, A. Nakayama, Y.M. Chen, J.P. Gong, and Y. Osada, 2007, Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage, Journal of Biomedical Materials Research 81A, 373–380.
Bachrach, N.M., W.B. Valhmu, E. Stazzone, A. Ratcliffe, W.M. Lai, and V.C. Mow, 1995, Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associatedwith the time-dependent changes in their mechanical environment, Journal of Biomechanics 28, 1561–1569.
Bastide, J. and L. Leibler, 1988, Large-scale heterogeneities in randomly cross-linked networks, Macromolecules 21, 2647.
Burczak, K., E. Gamian and A. Kochman, 1996, Long-term in vivo performance and biocompatibility of poly (vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas, Biomaterials 17, 2351–2356.
Chen, G. and Hoffman, A.S., 1995, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH, Nature 373, 49–52.
Chen, Q., L. Zhu, C. Zhao, Q. Wang, and J. Zheng, 2013, A Robust, One-Pot Synthesis of Highly Mechanical and Recoverable Double Network Hydrogels Using Thermoreversible Sol-Gel Polysaccharide, Advaned Materials doi: 10.1002/adma.201300817.
Chen, Y., M. Zhang, W. Liu, and G. Li, 2011, Properties of alkalisolubilized collagen solution crosslinked by N-hydroxysuccinimide activated adipic acid, Korea-Australia Rheology Journal 23, 41–48.
Chen, Y.M., K. Dong, Z.Q. Liu, and F. Xu, 2012, Double network hydrogel with high mechanical strength: Performance, progress and future perspective, Science China Technological Sciences 55, 2241–2254.
Chen, Y.M., J.J. Yang, and J.P. Gong, 2009, Spreading, and Proliferation of Endothelial Cells on Charged Hydrogels, The Journal of Adhesion 85, 839–868.
Chen, Y.M., J.P. Gong, M. Tanaka, K. Yasuda, S. Yamamoto, M. Shimomura, and Y. Osada, 2009, Tuning of cell proliferation on tough gels by critical charge effect, Journal of Biomedical Materials Research 88(A), 74–83.
Chen, Y.M., N. Shiraishi, H. Satokawa, A. Kakugo, T. Narita, J.P. Gong, Y. Osada, K. Yamamoto, and J. Ando, 2005, Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels, Biomaterials 26, 4588–4596.
Chen, Y.M., R. Ogawa, A. Kakugo, Y. Osada, and J.P. Gong, 2009, Dynamic cell behavior on synthetic hydrogels with different charge densities, Soft Matter 5, 1804–1811.
Dai, T., X. Qing, H. Zhou, C. Shen, J. Wang, and Y. Lu, 2010, Mechanically strong conducting hydrogels with special double-network structure, Synthetic Metals 160, 791–796.
Dai, T., X. Qing, Y. Lu and Y. Xia, 2009, Conducting hydrogels with enhanced mechanical strength, Polymer 50, 5236–5241.
David W., M.D. Scharp, N.S. Mason, and R.E. Sparks, 1984, Islet Immuno-isolation: The Use of Hybrid Artificial Organs to Prevent Islet Tissue Rejection, World Journal of Surgery 8, 221–229.
Drury, J.L. and D.J. Mooney, 2003, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials 24, 4337–4351.
Engler, A.J., S. Sen, H.L. Sweeney, and D.E. Discher, 2006, Matrix elasticity directs stem cell lineage specification, Cell 126, 677–689.
Fantner, G.E., T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, A. Jacqueline, Cutroni, A.G. Geraldo, Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma, 2005, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture, Nature Materials 4, 612–616.
Fedorovich, N.E., J. Alblas, D. Wijn JR, W.E. Hennink, A.J. Verbout, and W.J. Dhert, 2007, Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing, Tissue Engineering 13, 1905–1925.
Furukawa, H., K. Horie, R. Nozaki, and M. Okada, 2003, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E 68, 031406.
Gong, J.P., Y. Katsuyama, T. Kurokawa, and Y. Osada, 2003, Double-Network Hydrogels with Extremely High Mechanical Strength, Advanced Materials 15, 1155–1158.
Gong, J.P., T. Kurokawa, T. Narita, G. Kagata, Y. Osada, G. Nishimura, and M. Kinjo, 2001, Synthesis of Hydrogels with Extremely Low Surface Friction, Journal of American Chemical Society 123, 5582–5583.
Haraguchi, K. and T. Takeshita, 2002, Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraodinary Mechanical, Optical, and Swelling/De-swelling Properties, Advanced Materials 14, 1120–1124.
Haque, M.A., T. Kurokawa, and J.P. Gong, 2012, Super Tough Double Network Hydrogels And Their Application As Biomaterials, Polymer 53(9), 1805–1822.
Hashmi, S., F. Obiweluozor, A. GhavamiNejad, M. Vatankhah-Varnoosfaderani, and F. J. Stadler, 2012, On-line observation of hydrogels during swelling and LCST-induced changes, Korea-Australia Rheology Journal 24, 191–198.
Hoffman, A.S., 2012, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews 64, 18–23.
Hu, J., K. Hiwatashi, T. Kurokawa, S.M. Liang, Z.L. Wu, and J.P. Gong, 2011, Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure, Macromolecules 44, 7775–7781.
Huang, M., H. Furukawa, Y. Tanaka, T. Nakajima, Y. Osada, and J.P. Gong, 2007, Importance of Entanglement between First and Second Components in High-Strength Double Network Gels, Macromolecules 40, 6658–6664.
Hwang, N.S., S. Varghese, and J. Elisseeff, 2008, Controlled differentiation of stem cells, Advanced Drug Delivery Reviews 60, 199–214.
Hwang, N.S., S. Varghese, Z. Zhang, and J. Elisseeff, 2006, Chondrogenic differentiation of human embryonic stem cellderived cells in arginine-glycine-aspartate modified hydrogels, Tissue Engineering 12, 2695–2706.
Huang, P., W. Chen, and L. Yan, 2013, An inorganic-organic double network hydrogel of graphene and polymer, Nanoscale 5, 6034–6039.
Khalsa, P.S. and S.R. Eisenberg, 1997, Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. Journal of Biomechanics 30, 589–594.
Kitamura, N., K. Yasuda, M. Ogawa, K. Arakaki, S. Kai, S. Onodera, T. Kurokawa, and J.P. Gong, 2011, Induction of Spontaneous Hyaline Cartilage Regeneration Using a Double-Network Gel: Efficacy of a Novel Therapeutic Strategy for an Articular Cartilage Defect, The American Journal of Sports Medicine 39, 1160–1169.
Kwon, H.J., K. Yasuda, Y. Ohmiya, K. Honma, Y.M. Chen, and J.P. Gong, 2010, In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities, Acta Biomaterialia 6, 494–501.
Lake, G.J. and A.G. Thomas, 1967, The Strength of Highly Elastic Materials, Proceedings of the Royal Society London (A) 300, 108–119.
Li, Z., Z. Wei, F. Xu, Y.H. Li, T.J. Lu, Y.M. Chen, and G.J. Zhou, 2012, Novel Phosphorescent Hydrogels Based on an IrIII Metal Complex, Macromolecular Rapid Communications 33, 1191–1196.
Liu, J.F., Y.M. Chen, J.J. Yang, T. Kurokawa, A. Kakugo, K. Yamamoto, and J.P. Gong, 2011, Dynamic behavior and spontaneous differentiation of mouse embryoid bodies on hydrogel substrates of different surface charge and chemical structures, Tissue Engineering 17(A), 2343–2357.
Malana, M.A., R. Zohra, and M.S. Khan, 2012, Rheological characterization of novel physically crosslinked terpolymeric hydrogels at different temperatures, Korea-Australia Rheology Journal 24, 155–162.
Malkoch, M., R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. Mason, J. Hedrick, Q. Liao, C. Frank, K. Kingsbury, and C. Hawker, 2006, Synthesis of well-defined hydrogel networks using Click chemistry, Chemical Communications 26, 2774–2776.
Myung, D., W. Koh, J. Ko, Y. Hu, M. Carrasco, J. Noolandi, C.N. Ta, and C.W. Frank, 2007, Biomimetic strain hardening in interpenetrating polymer network hydrogels, Polymer 48, 5376–5387.
Na, Y.-H., T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J.P. Gong, Y. Osada, S. Okabe, T. Karino, and M. Shibayama, 2004, Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength, Macromolecules 37, 5370–5374.
Na, Y.-H., Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J.P. Gong, and Y. Osada, 2006, Necking Phenomenon of Double-Network Gels, Macromolecules 39, 4641–4645.
Naficy, S., J.M. Razal, G.M. Spinks, G.G. Wallace, and P.G. Whit ten, 2012, Electrically Conductive, Tough Hydrogels with pH Sensitivity, Chemistry of Materials 24, 3425–3433.
Nakajima T, N. Takedomi, T. Kurokawa, H. Furukawa, and J.P. Gong, 2010, A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly (vinyl alcohol) as an internal mold, Polymer Chemistry 1, 693–697.
Nakajima, T., T. Kurokawa, H. Furukawa, Q.M. Yu, Y. Tanaka, Y. Osada, and J.P. Gong, 2009, Super tough gels with a double network structure, Chinese Journal of Polymer Science 27(1), 1–9.
Nakayama, A., A. kakugo, J.P. Gong, Y. Osada, M. Takai, T. Erata, and S. Kawano, 2004, High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose, Advanced Functional Materials 14, 1124–1128.
Nicodemus, G.D. and S.J. Bryant, 2008, The role of hydrogel structure and dynamic loading on chondrocyte, Journal of Biomechanics 41, 1528–1536.
Nicolson, P.C. and J. Vogt, 2001, Soft contact lens polymers: an evolution, Biomaterials 22, 3273–3283.
Ogawa, M., N. Kitamura, T. Kurokawa, K. Arakaki, Y. Tanaka, J.P. Gong, and K. Yasuda, 2012, Poly (2-acrylamido-2-methylpropanesulfonic acid) gel induces articular cartilage regeneration in vivo: comparisons of the induction ability between single- and double-network gels, Journal of Biomedical Materials Research 100(A), 2244–2251.
Okumura, Y. and K. Ito, 2001, The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, Advanced Materials 13, 485–487.
Osada, Y., H. Okuzaki, and H. Hori, 1992, A polymer gel with electrically driven motility, Nature 355, 242–244.
Osada, Y. and J.P. Gong, 1998, Soft and Wet Materials: Polymer Gels, Advanced Materials 10, 827–837.
Saito, J.J., H. Furukawa, T. Kurokawa, R. Kuwabara, S. Kuroda, J. Hu, Y. Tanaka, J.P. Gong, N. Kitamurae, and K. Yasudae, 2011, Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure. Polymer Chemistry 2, 575–580.
Sakai, T., T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, and U.I. Chung, 2008, Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers, Macromolecules 41, 5379–5384.
Sun, J.Y., X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, and Z. Suo, 2012, Highly stretchable and tough hydrogels, Nature 489, 133–136.
Sun, T.L., T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, and J.P. Gong, 2013, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nature Materials doi:10.1038/inmat3713.
Tanabe Y., K. Yasuda, C. Azuma, H. Taniguro, S. Onodera, A. Suzuki, Y.M. Chen, J.P. Gong, and Y. Osada, 2008, Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues, Journal of Materials Science: Materials in Medicine 19, 1379–1387.
Tanaka, Y., 2007, A local damage model for anomalous high toughness of double-network gels, Europhysics Letters 78, 56005.
Tanaka, Y., I. Nishio, S.T. Sun, and S. Ueno-Nishio, 1982, Collapse of Gels in an Electric-Field, Science 218, 467–469.
Tanaka, Y., K. Fukao and Y. Miyamoto, 2000, Fracture energy of gels, The European Physical Journal E 3, 395–401.
Tanaka, Y., R. Kuwabara, Y.-H. Na, T. Kurokawa, J.P. Gong, and Y. Osada, 2005, Determination of Fracture Energy of High Strength Double Network Hydrogels, Jounal of Physical Chemistry B 109, 11559–11562.
Tanaka, Y., Y. Kawauchi, T. Kurokawa, H. Furukawa, T. Okajima, and J.P. Gong, 2008, Localized Yielding Around Crack Tips of Double-Network Gels, Macromolecular Rapid Communications 29, 1514–1520.
Tsukeshiba, H., M. Huang, Y.-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, and J.P. Gong, 2005, Effect of Polymer Entanglement on the Toughening of Double Network Hydrogels, Journal of Physical Chemistry B 109, 16304–16309.
Weng, L., A. Gouldstone, Y. Wu, and W. Chen, 2008, Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated, Biomaterials 29, 2153–2163.
Weber, L. M., K.N. Hayda, K. Haskins, and K.S. Anseth, 2007, The effects of cell-matrix interactions on encapsulated betacell function within hydrogels functionalized with matrixderived adhesive peptides, Biomaterials 28, 3004–3011.
Webber, R.E., C. Creton, H.R. Brown, and J.P. Gong, 2007, Large strain hysteresis and mullins effect of tough double network hydrogels, Macromolecules 40, 2917–2927.
Wu, Z.L., T. Kurokawa, and J.P. Gong, 2011, Novel Developed Systems and Techniques Based on Double-Network Principle, Bulletin of the Chemical Society of Japan 84(12), 1295–1311.
Yan D, G.L. Zhou, and Y.L. Cao, 2009, The relationship research of articular cartilage mechanical properties and biological structures (in Chinese). Journal of Shanghai Jiaotong University (Medical Science) 29, 341–345.
Yang, J.J., J.J. Liu, T. Kurokawa, K. Kitada, and J.P. Gong, 2012 Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells, Journal of Tissue Engineering and Regenerative Medicine doi: 10.1002/term.1640.
Yasuda, K., J.P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, and Y. Osada, 2005, Biomechanical properties of high-toughness double network hydrogels, Biomaterials 26, 4468–4475.
Yasuda, K., N. Kitamura, J.P. Gong, K. Arakaki, H.J. Kwon, S. Onodera, Y.M. Chen, T. Kurokawa, F. Kanaya, Y. Ohmiya, and Y. Osada, 2009, A Novel Double-Network Hydrogel Induces Spontaneous Articular Cartilage Regeneration in vivo in a Large Osteochondral Defect, Macromolecular Bioscience 9, 307–316.
Yoshida R, T. Takahashi, T. Yamaguchi, and H. Ichijo, 1997, Self-oscillating gels, Advanced Materials 9, 175–178.