Double memristors series hyperchaotic system with attractive coexistence and its circuit implementation
Tóm tắt
In this paper, the sine function memristor and the cosine function memristor are connected in series, and the constructed series memristor is numerically analyzed through its volt-ampere characteristics, and then the new memristor was introduced into the Rossler system to construct a hyperchaotic system with dual memory elements. The coexistence attractor and fractal phenomena in the system are analyzed, and the fractal dimension of the system is calculated on the basis of fractal theory. In addition, analog circuits corresponding to the system are designed and simulated based on circuit theory. DSP is used for digital circuit experiments to explore the application of this system in practice.
Tài liệu tham khảo
S. Haykin, S. Puthusserypady, Chaotic dynamics of sea clutter. Chaos (Woodbury, NY) 7, 777–802 (1998)
Juan Barajas-Ramìrez, Arturo Franco-López, Hugo Gonzalez-Hernandez, Generating Shilnikov chaos in 3D piecewise linear systems. Appl. Math. Comput. 395, 125877 (2021). https://doi.org/10.1016/j.amc.2020.125877
P. Gauthier, Chaos and quadri-dimensional data assimilation: a study based on the Lorenz model. Tellus A 44(1), 2–17 (1992)
Y.-Q. Zhang, X.-Y. Wang, J. Liu, Z.-L. Chi, An image encryption scheme based on the MLNCML system using DNA sequences. Opt. Lasers Eng. 82, 95–103 (2016)
R.M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos (in eng). Science 186(4164), 645–7 (1974)
J.N. Weiss, A. Garfinkel, M.L. Spano, W.L. Ditto, Chaos and chaos control in biology (in eng). J. Clin. Investig. 93(4), 1355–60 (1994)
T.D. Rogers, Chaos in systems in population biology, in Progress in Theoretical Biology, vol. 6, pp. 90–146 (1981)
M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)
T. Liu, S. Banerjee, H. Yan, J. Mou, Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136(5), 506 (2021)
J. L. Mccauley, Chaos, Dynamics, and Fractals: an Algorithmic Approach to Determinstic Chaos[M] (Cambridge University Press, 1993)
F. Zhang, L. Xu, J. Wang, The dynamic and thermodynamic origin of dissipative chaos: chemical Lorenz system. Phys. Chem. Chem. Phys. 22, 27896–902 (2020)
A. Datta, A. Mukherjee, A.K. Ghosh, Simulation and analysis of a chaos-masking communication scheme based on electronic simulator for electro-optic modulator with noise. SN Comput. Sci. 2(4), 240 (2021)
A. Chithra, T.F. Fozin, K. Srinivasan, E.R.M. Kengne, A.T. Kouanou, I.R. Mohamed, Complex dynamics in a memristive diode bridge-based MLC circuit: coexisting attractors and double-transient chaos. Int. J. Bifurc. Chaos 31(03), 2150049 (2021)
H. Zhang, X.-F. Li, A.Y.T. Leung, A calculation method on bifurcation and state parameter sensitivity analysis of piecewise mechanical systems. Int. J. Bifurc. Chaos 30(11), 2030033 (2020)
P. Sharma, T. Jain, V. Sethi, V. Dudeja, Symphony in chaos: immune orchestra during pancreatic cancer progression. EBioMedicine 56, 102787 (2020)
D.V. Guseinov, I.V. Matyushkin, N.V. Chernyaev, A.N. Mikhaylov, Y.V. Pershin, Capacitive effects can make memristors chaotic. Chaos, Solitons Fractals 144, 110699 (2021)
X. Li, Z. Feng, Q. Zhang, X. Wang, G. Xu, Scaling of attractors of a multiscroll memristive chaotic system and its generalized synchronization with sliding mode control. Int. J. Bifurc. Chaos 31(01), 2150007 (2021)
C. Du, L. Liu, Z. Zhang, S. Yu, A coupling method of double memristors and analysis of extreme transient behavior. Nonlinear Dyn. 104(1), 765–787 (2021)
A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, T. Mikolajick, Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 1165–1174 (2015)
L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)
Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)
L.O. Chua, Y. Tao, Z. Guo-Qun, W. Chai Wah, Synchronization of Chua’s circuits with time-varying channels and parameters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(10), 862–868 (1996)
L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)
X. Ma, J. Mou, J. Liu, C. Ma, F. Yang, X. Zhao, A novel simple chaotic circuit based on memristor-memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020)
Z. Qu et al., A novel WOx-based memristor with a Ti nano-island array. Electrochim. Acta 377, 138123 (2021)
Y. Shen, G. Wang, History erase effect of real memristors. Electronics 10, 303 (2021)
M. Itoh, L. Chua, Memristor cellular automata and memristor discrete-time cellular neural networks, in Memristor Networks. ed. by A. Adamatzky, L. Chua (Springer International Publishing, Cham, 2014), pp. 649–713
S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, W.D. Lu, Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15(3), 2203–2211 (2015)
H. Abdalla, M.D. Pickett, SPICE modeling of memristors. In: IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 1832–1835 (2011)
S. Benderli, T.A. Wey, On SPICE macromodelling of TiO2 memristors. Electron. Lett. IEE 45(7), 377–378 (2009)
Y.-Q. Zhang, X.-Y. Wang, L.-Y. Liu, Y. He, J. Liu, Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices. Commun. Nonlinear Sci. Num. Simul. 52, 52–61 (2017)
L. Xiong, X. Zhang, Y. Chen, Experimental verification of volt-ampere characteristic curve for a memristor-based chaotic circuit. Circuit World 46(1), 13–24 (2020)
Y. Shen, G. Wang, Y. Liang, S. Yu, H.H. Iu, Parasitic memcapacitor effects on HP TiO2 memristor dynamics. IEEE Access 7, 59825–59831 (2019)
X. Wang, S. Wang, Y. Zhang, C. Luo, A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems. Opt. Lasers Eng. 103, 1–8 (2018)
A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, G. Sciuto, Memristive chaotic circuits based on cellular nonlinear networks. Int. J. Bifurc. Chaos 22(03), 1250070 (2012)
A.I. Ahamed, K. Srinivasan, K. Murali, M. Lakshmanan, Observation of chaotic beats in a driven memristive Chua’s circuit. Int. J. Bifurc. Chaos 21(03), 737–757 (2011)
L.O. Chua, C.W. Wu, A. Huang, Z. Guo-Qun, A universal circuit for studying and generating chaos. I. Routes to chaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(10), 732–744 (1993)
T. Matsumoto, Chaos in electronic circuits. Proc. IEEE 75(8), 1033–1057 (1987)
H. Wu, H. Zhu, G. Ye, Public key image encryption algorithm based on pixel information and random number insertion. Phys. Scr. 96(10), 105202 (2021)
Y. Liu, Z. You, Multi-stability and almost periodic solutions of a class of recurrent neural networks. Chaos Solitons Fractals 33(2), 554–563 (2007)
M. Chen, J. Yu, B.-C. Bao, Hidden dynamics and multi-stability in an improved third-order Chua’s circuit. J. Eng. 2015(10), 322–324 (2015). https://doi.org/10.1049/joe.2015.0149
A.O. Adelakun, Resonance oscillation and transition to chaos in \(\phi ^8\)-Duffing–Van der Pol oscillator. Int. J. Appl. Comput. Math. 7(3), 82 (2021)
Y.-Q. Zhang, X.-Y. Wang, Spatiotemporal chaos in mixed linear-nonlinear coupled logistic map lattice. Phys. A Stat. Mech. Appl. 402, 104–118 (2014)
L. Zhang, H. Jiang, Y. Liu, Z. Wei, Q. Bi, Controlling hidden dynamics and multistability of a class of two-dimensional maps via linear augmentation. Int. J. Bifurc. Chaos 31(03), 2150047 (2021)
F. Yang, J. Mou, C. Ma, Y. Cao, Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt. Lasers Eng. 129, 106031 (2020)
C. Ma, J. Mou, P. Li, T. Liu, Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. (2021)
G. Dou et al., Coexisting multi-dynamics of a physical SBT memristor-based chaotic circuit. Int. J. Bifurc. Chaos 30(11), 2030043 (2020)
T. Yang, Multistability and hidden attractors in a three-dimensional chaotic system. Int. J. Bifurc. Chaos 30(06), 2050087 (2020)
Y. Wang, P. Shang, Complexity analysis of time series based on generalized fractional order refined composite multiscale dispersion entropy. Int. J. Bifurc. Chaos 30(14), 2050211 (2020)
J.P. Eckmann, D. Ruelle, Addendum: ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(4), 1115–1115 (1985)
T. Liu, H. Yan, S. Banerjee, J. Mou, A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation. Chaos Solitons Fractals 145, 110791 (2021)
X. Shang, P. Ma, M. Yang, T. Chao, An efficient polynomial chaos-enhanced radial basis function approach for reliability-based design optimization. Struct. Multidiscip. Optim. 63(2), 789–805 (2021)
X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140, 107074 (2021)
C. Xiu, R. Zhou, S. Zhao, G. Xu, Memristive hyperchaos secure communication based on sliding mode control. Nonlinear Dyn. 104(1), 789–805 (2021)
J.H. Park, Adaptive synchronization of Rossler system with uncertain parameters. Chaos Solitons Fractals 25(2), 333–338 (2005)
C. Li, X. Liao, Lag synchronization of Rossler system and Chua circuit via a scalar signal. Phys. Lett. A 329(4), 301–308 (2004)