Double layered solutions to the extended Fisher–Kolmogorov P.D.E.
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alama, S., Bronsard, L., Gui, C.: Stationary layered solutions in $$\mathbb{R}^2$$ for an Allen–Cahn system with multiple well potential. Calc. Var. 5(4), 359–390 (1997)
Alessio, F.: Stationary layered solutions for a system of Allen–Cahn type equations. Indiana Univ. Math. J. 62, 1535–1564 (2013)
Alessio, F., Jeanjean, L., Montecchiari, P.: Stationary layered solutions in $$\mathbb{R}^2$$ for a class of non autonomous Allen–Cahn equations. Calc. Var. Partial. Differ. Equ. 11(2), 177–202 (2000)
Alessio, F., Montecchiari, P: Entire solutions in $$R^2$$ for a class of Allen–Cahn equations. ESAIM: COCV 11, 633–672 (2005)
Alessio, F.G., Montecchiari, P.: Brake orbits type solutions to some class of semilinear elliptic equations. Calc. Var. Partial. Differ. Equ. 30, 51–83 (2007)
Alessio, F., Montecchiari, P.: An energy constrained method for the existence of layered type solutions of NLS equations. AIHP Anal. Non Linéaire 31(4), 725–749 (2014)
Alessio, F.G., Montecchiari, P.: Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential. J. Fixed Point Theory Appl. 19(1), 691–717 (2017)
Alikakos, N.D., Fusco, G.: On the connection problem for potentials with several global minima. Indiana Univ. Math. J. 57, 1871–1906 (2008)
Antonopoulos, P., Smyrnelis, P.: On minimizers of the Hamiltonian system $$u^{\prime }{\prime }=\nabla W(u)$$, and on the existence of heteroclinic, homoclinic and periodic orbits. Indiana Univ. Math. J. 65(5), 1503–1524 (2016)
Bonheure, D., Sanchez, L.: Heteroclinic Orbits for Some Classes of Second and Fourth Order Differential Equations. Handbook of Differential Equations: Ordinary Differential Equations, vol. III, pp. 103–202. Elsevier/North-Holland, Amsterdam (2006)
Bonheure, D., Földes, J., Saldaña, A.: Qualitative properties of solutions to mixed-diffusion bistable equations. Calc. Var. 55, 67 (2016)
Bonheure, D., Hamel, F.: One-dimensional symmetry and Liouville type results for the fourth order Allen–Cahn equation in $$\mathbb{R}^N$$. Chin. Ann. Math. Ser. B 38, 149–172 (2017)
Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. 50 in Notas de Matemática. North-Holland Publishing Company (1973)
Cazenave, T., Haraux, A.: An Introduction to Semilinaer Evolution Equations. Oxford Lecture Series in Mathematics and Its Applications, Clarendon Press, Oxford (1998)
Dee, G.T., van Saarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60, 2641–2644 (1988)
Cesaroni, A., Cirant, M.: Brake orbits and heteroclinic connections for first order mean field games. arXiv:1912.05874v3 (2019)
De Giorgi, E.: Convergence problems for functionals and operators. In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Rome (1978), pp. 131–188. Pitagora, Bologna (1979)
Farina, A., Valdinoci, E.: The State of Art for a Conjecture of De Giorgi and Related Questions. Reaction-Diffusion Systems and Viscosity Solutions. World Scientific, Singapore (2008)
Fonseca, I., Mantegazza, C.: Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31, 1121–1143 (2000)
Fusco, G.: Layered solutions to the vector Allen–Cahn equation in $$R^2$$. Minimizers and heteroclinic connections. Commun. Pure Appl. Anal. 16(5), 1807–1841 (2017)
Fusco, G., Gronchi, G.F., Novaga, M.: Existence of periodic orbits near heteroclinic connections. Minimax Theory Appl. 4, 113–149 (2019)
Kalies, W.D., Van der Vorst, R.C.A.M.: Multitransition homoclinic and heteroclinic solutions of the extended Fisher–Kolmogorov equation. J. Differ. Equ. 131(2), 209–228 (1996)
Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, CRC Press, Boca Raton (2006)
Hilhorst, D., Peletier, L.A., Schätzle, R.: $$\Gamma $$-limit for the extended Fisher–Kolmogorov equation. Proc. R. Soc. Edinb. A 132, 141–162 (2002)
Kreuter, M.: Sobolev spaces of vector-valued functions. Master thesis, Ulm University, Faculty of Mathematics and Economics (2015)
Monteil, A., Santambrogio, F.: Metric methods for heteroclinic connections in infinite dimensional spaces. Indiana Univ. Math. J. 69, 1445–1503 (2020)
Peletier, L.A., Troy, W.C.: Spatial Patterns, Higher Order Models in Physics and Mechanics, vol. 45. Birkhäuser, Boston (2001)
Peletier, L.A., Troy, W.C., Van der Vorst, R.C.A.M.: Stationary solutions of a fourth-order nonlinear diffusion equation. Differentsialnye Uravneniya 31(2), 327–337 (1995)
Schatzman, M.: Asymmetric heteroclinic double layers. Control Optim. Calc. Var. 8 (A tribute to J. L. Lions) 965–1005 (electronic) (2002)
Smyrnelis, P.: Minimal heteroclinics for a class of fourth order O.D.E. systems. Nonlinear Anal. Theory Methods Appl. 173, 154–163 (2018)