Double collisions for a classical particle system with nongravitational interactions

Richard McGehee1
1School of Mathematics, University of Minnesota, Minneapolis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Conley, C.,Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, 1978.

Conley, C. andEaston, R.,Isolated invariant sets and isolating blocks,Trans. Amer. Math. Soc. 158 (1971), 35–61.

Devaney, R.,Collision orbits in the anisotropic Kepler problem, Inventiones Math.45 (1978), 221–251.

Easton, R.,Regularization of vector fields by surgery, J. Differential Equations10 (1971), 92–99.

Fenichel, N.,Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J.21 (1971), 193–226.

Levi-Civita, T.,Sur la régularisation du problème des trois corps, Acta Math.42 (1920), 99–144.

McGehee, R.,Triple collision in Newtonian gravitational systems, Dynamical Systems, Theory and Applications, J. Moser, ed., Lecture Notes in Physics, Springer-Verlag, 1975, 550–572.

McGehee, R.,Singularities in classical celestial mechanics, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, 827–834.

Moser, J.,Three integrable Hamiltonian systems connected with isospectral deformation, Adv. in Math.16 (1975), 197–220.

Siegel, C. L. andMoser, J.,Lectures on Celestial Mechanics, Springer-Verlag, 1971.

Siegel, C. L.,Der Dreierstoss, Ann. Math.42 (1941), 127–168.

Sundman, K.,Recherches sur le problème des trois corps, Acta Societatis Scientierum Fennicae34 (1907).

Whittaker, E. T.,A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Dover, N.Y., 1944.

Wilson, F. W., Jr. andYorke, J.,Lyapunov functions and isolating blocks, J. Differential Equations13 (1973), 106–123.