DouFu: A Double Fusion Joint Learning Method for Driving Trajectory Representation
Tài liệu tham khảo
Zheng, 2015, Trajectory data mining: an overview, ACM Trans. Intell. Syst. Technol., 6, 1, 10.1145/2743025
Zhou, 2022, Identifying spatiotemporal characteristics and driving factors for road traffic CO2 emissions, Sci. Total Environ., 834, 10.1016/j.scitotenv.2022.155270
P. Wang, Y. Fu, J. Zhang, P. Wang, Y. Zheng, C. Aggarwal, You are how you drive: Peer and temporal-aware representation learning for driving behavior analysis, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2457–2466.
Cao, 2019, Habit2vec: Trajectory semantic embedding for living pattern recognition in population, IEEE Trans. Mob. Comput., 19, 1096, 10.1109/TMC.2019.2902403
Liu, 2016, Predicting the next location: A recurrent model with spatial and temporal contexts
Bao, 2021, A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media, Int. J. Geogr. Inf. Sci., 35, 639, 10.1080/13658816.2020.1808896
Wan, 2022, Itourspot: a context-aware framework for next POI recommendation in location-based social networks, Int. J. Digit. Earth, 15, 1614, 10.1080/17538947.2022.2122611
Sun, 2019, Building a model-based personalised recommendation approach for tourist attractions from geotagged social media data, Int. J. Digit. Earth, 12, 661, 10.1080/17538947.2018.1471104
Zhou, 2018, Trajectory-user linking via variational AutoEncoder, 3212
Bengio, 2013, Representation learning: A review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798, 10.1109/TPAMI.2013.50
Dong, 2016
Dong, 2017, Autoencoder regularized network for driving style representation learning
T. Kieu, B. Yang, C. Guo, C.S. Jensen, Distinguishing trajectories from different drivers using incompletely labeled trajectories, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 863–872.
S. Liu, Y. Liu, L.M. Ni, J. Fan, M. Li, Towards mobility-based clustering, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 919–928.
X. Li, K. Zhao, G. Cong, C.S. Jensen, W. Wei, Deep representation learning for trajectory similarity computation, in: 2018 IEEE 34th International Conference on Data Engineering, ICDE, 2018, pp. 617–628.
Gong, 2020, High-performance spatiotemporal trajectory matching across heterogeneous data sources, Future Gener. Comput. Syst., 105, 148, 10.1016/j.future.2019.11.027
Wu, 2019, Inferring demographics from human trajectories and geographical context, Comput. Environ. Urban Syst., 77, 10.1016/j.compenvurbsys.2019.101368
Letchner, 2006, Trip router with individualized preferences (trip): Incorporating personalization into route planning, 1795
H. Ren, M. Pan, Y. Li, X. Zhou, J. Luo, ST-SiameseNet: Spatio-Temporal Siamese Networks for Human Mobility Signature Identification, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1306–1315.
Gao, 2017, Identifying human mobility via trajectory embeddings, 1689
J.J.-C. Ying, W.-C. Lee, T.-C. Weng, V.S. Tseng, Semantic trajectory mining for location prediction, in: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2011, pp. 34–43.
Ying, 2014, Mining geographic-temporal-semantic patterns in trajectories for location prediction, ACM Trans. Intell. Syst. Technol., 5, 1, 10.1145/2542182.2542184
Fu, 2020, TremBR: Exploring road networks for trajectory representation learning, ACM Trans. Intell. Syst. Technol., 11, 1, 10.1145/3361741
Zhou, 2021, Self-supervised human mobility learning for next location prediction and trajectory classification, Knowl.-Based Syst., 228, 10.1016/j.knosys.2021.107214
Siami, 2020, A mobile telematics pattern recognition framework for driving behavior extraction, IEEE Trans. Intell. Transp. Syst., 22, 1459, 10.1109/TITS.2020.2971214
Yue, 2021, VAMBC: A variational approach for mobility behavior clustering, 453
M. Tabatabaie, S. He, X. Yang, Reinforced Feature Extraction and Multi-Resolution Learning for Driver Mobility Fingerprint Identification, in: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, 2021, pp. 69–80.
Baltruaitis, 2018, Multimodal machine learning: A survey and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell., 41, 423, 10.1109/TPAMI.2018.2798607
M. Wllmer, A. Metallinou, F. Eyben, B. Schuller, S. Narayanan, Context-sensitive multimodal emotion recognition from speech and facial expression using bidirectional lstm modeling, in: Proc. INTERSPEECH 2010, Makuhari, Japan, 2010, pp. 2362–2365.
Kahou, 2016, EmoNets: Multimodal deep learning approaches for emotion recognition in video, J. Multimodal User Interfaces, 10, 99, 10.1007/s12193-015-0195-2
R. Xu, C. Xiong, W. Chen, J. Corso, Jointly modeling deep video and compositional text to bridge vision and language in a unified framework, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015, p. 29.
H. Yu, J. Wang, Z. Huang, Y. Yang, W. Xu, Video paragraph captioning using hierarchical recurrent neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4584–4593.
T. Phan-Minh, E. Grigore, F. Boulton, O. Beijbom, E.M. Wolff, CoverNet: Multimodal Behavior Prediction Using Trajectory Sets, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 14062–14071.
H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, N. Djuric, Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 2090–2096.
Chen, 2020, Find you if you drive: Inferring home locations for vehicles with surveillance camera data, Knowl.-Based Syst., 196, 10.1016/j.knosys.2020.105766
Huang, 2020, DiversityGAN: Diversity-aware vehicle motion prediction via latent semantic sampling, IEEE Robot. Autom. Lett., 5, 5089, 10.1109/LRA.2020.3005369
J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, D. Jin, Deepmove: Predicting human mobility with attentional recurrent networks, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1459–1468.
Gao, 2019, Predicting human mobility via variational attention, 2750
Vaswani, 2017, Attention is all you need, 5998
Devlin, 2019, BERT: Pre-training of deep bidirectional transformers for language understanding
Yang, 2019, Xlnet: Generalized autoregressive pretraining for language understanding
H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial–temporal similarity: A deep learning framework for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 5668–5675.
Yang, 2021, ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation, Knowl.-Based Syst., 215, 10.1016/j.knosys.2020.106705
Z. Yu, J. Yu, Y. Cui, D. Tao, Q. Tian, Deep Modular Co-Attention Networks for Visual Question Answering, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 6274–6283.
Tan, 2019
Yin, 2022, ConvGCN-RF: A hybrid learning model for commuting flow prediction considering geographical semantics and neighborhood effects, GeoInformatica, 10.1007/s10707-022-00467-0
Gong, 2020, Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018, Sci. Bull., 65, 182, 10.1016/j.scib.2019.12.007
Huang, 2020, An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data, Remote Sens., 12, 3254, 10.3390/rs12193254
Feng, 2021, An SOE-based learning framework using multisource big data for identifying urban functional zones, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 7336, 10.1109/JSTARS.2021.3091848
Mikolov, 2013, Efficient estimation of word representations in vector space
Kipf, 2016