Dosimetric robustness of lung tumor photon radiotherapy evaluated from multiple event CT imaging
Tài liệu tham khảo
Wolthaus, 2008, Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients, Int J Radiat Oncol* Biol* Phys, 70, 1229, 10.1016/j.ijrobp.2007.11.042
von Reibnitz, 2018, Stereotactic body radiation therapy (SBRT) improves local control and overall survival compared to conventionally fractionated radiation for stage I non-small cell lung cancer (NSCLC), Acta Oncol, 57, 1567, 10.1080/0284186X.2018.1481292
Ge, 2013, Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors, Int J Radiat Oncol* Biol* Phys, 85, 999, 10.1016/j.ijrobp.2012.09.014
Harada, 2016, Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT), Phys Med, 32, 305, 10.1016/j.ejmp.2015.10.093
Wikström, 2021, Evaluation of irregular breathing effects on internal target volume definition for lung cancer radiotherapy, Med Phys, 48, 2136, 10.1002/mp.14824
Riegel, 2009, Cine computed tomography without respiratory surrogate in planning stereotactic radiotherapy for non–small-cell lung cancer, Int J Radiat Oncol* Biol* Phys, 73, 433, 10.1016/j.ijrobp.2008.04.047
Purdie, 2006, Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy, Acta Oncol, 45, 915, 10.1080/02841860600907345
Cai, 2007, Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging, Int J Radiat Oncol* Biol* Phys, 69, 895, 10.1016/j.ijrobp.2007.07.2322
Rabe, 2020, Real-time 4DMRI-based internal target volume definition for moving lung tumors, Med Phys, d, 1431, 10.1002/mp.14023
Dasnoy-Sumell, 2022, Locally tuned deformation fields combination for 2D cine-MRI-based driving of 3D motion models, Phys Med, 94, 8, 10.1016/j.ejmp.2021.12.010
Shirato, 2006, Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy, Int J Radiat Oncol* Biol* Phys, 64, 1229, 10.1016/j.ijrobp.2005.11.016
Steiner, 2019, Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy, Radiother Oncol, 135, 65, 10.1016/j.radonc.2019.02.019
Nielsen, 2016, Impact of 4D image quality on the accuracy of target definition, Aust Phys Eng Sci Med, 39, 103, 10.1007/s13246-015-0400-3
Keall, 2006, The management of respiratory motion in radiation oncology report of AAPM task group 76 a, Med Phys, 33, 3874, 10.1118/1.2349696
Dhont, 2020, Image-guided radiotherapy to manage respiratory motion: Lung and liver, Clin Oncol, 32, 792, 10.1016/j.clon.2020.09.008
Keall, 2019, See, think, and act: real-time adaptive radiotherapy, Sem Radiat Oncol, 29, 228, 10.1016/j.semradonc.2019.02.005
Bellec, 2022, Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume?, Phys Med, 95, 16, 10.1016/j.ejmp.2022.01.004
Heath, 2009, Incorporating uncertainties in respiratory motion into 4D treatment plan optimization, Med Phys, 36, 3059, 10.1118/1.3148582
Nohadani, 2010, Motion management with phase-adapted 4D-optimization, Phys Med Biol, 55, 5189, 10.1088/0031-9155/55/17/019
Anderle, 2016, In silico comparison of photons versus carbon ions in single fraction therapy of lung cancer, Phys Med, 32, 1118, 10.1016/j.ejmp.2016.08.014
Kostiukhina, 2019, Dynamic lung phantom commissioning for 4D dose assessment in proton therapy, Phys Med Biol, 64, 10.1088/1361-6560/ab5132
Kostiukhina, 2020, Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy, Phys Med Biol, 65, 10.1088/1361-6560/ab8d79
Knopf, 2022, Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy–a comprehensive review, Radiother Oncol, 10.1016/j.radonc.2022.02.018
Badiu, 2022, Improved healthy tissue sparing in proton therapy of lung tumors using statistically sound robust optimization and evaluation, Phys Med, 96, 62, 10.1016/j.ejmp.2022.02.018
Guckenberger, 2007, Four-dimensional treatment planning for stereotactic body radiotherapy, Int J Radiat Oncol Biol Phys, 69, 276, 10.1016/j.ijrobp.2007.04.074
Thomas, 2019, An evaluation of the mid-ventilation method for the planning of stereotactic lung plans, Radiother Oncol, 137, 110, 10.1016/j.radonc.2019.04.031
Vander Veken, 2021, Incorporation of tumor motion directionality in margin recipe: The directional midp strategy, Phys Med, 91, 43, 10.1016/j.ejmp.2021.10.010
de Jong, 2020, Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91, Radiother Oncol, 142, 217, 10.1016/j.radonc.2019.11.001
Wilke, 2021, Improving interinstitutional and intertechnology consistency of pulmonary SBRT by dose prescription to the mean internal target volume dose, Strahlentherapie Und Onkologie, 197, 836, 10.1007/s00066-021-01799-w
Lacornerie, 2014, GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms, Radiat Oncol, 9, 1, 10.1186/s13014-014-0223-5
Bibault, 2015, Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients, PLoS One, 10, 10.1371/journal.pone.0133617
Baumann, 2018, Clinical results of mean GTV dose optimized robotic-guided stereotactic body radiation therapy for lung tumors, Front Oncol, 8, 171, 10.3389/fonc.2018.00171
Klement, 2020, Correlating dose variables with local tumor control in stereotactic body radiation therapy for early-stage non-small cell lung cancer: a modeling study on 1500 individual treatments, Int J Radiat Oncol* Biol* Phys, 107, 579, 10.1016/j.ijrobp.2020.03.005
Benedict, 2010, Stereotactic body radiation therapy: The report of AAPM task group 101, Med Phys, 37, 4078, 10.1118/1.3438081
Grimm, 2011, Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy, J Appl Clin Med Phys, 12, 267, 10.1120/jacmp.v12i2.3368
Fredriksson, 2011, Minimax optimization for handling range and setup uncertainties in proton therapy, Med Phys, 38, 1672, 10.1118/1.3556559
Lax, 2006, Dose distributions in SBRT of lung tumors: Comparison between two different treatment planning algorithms and Monte-Carlo simulation including breathing motions, Acta Oncol, 45, 978, 10.1080/02841860600900050
Leung, 2020, On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization, Radiat Oncol, 15, 1, 10.1186/s13014-020-01573-9
Gregoire, 2010, ICRU report 83, J ICRU, 13, 112
Bradley, 2015, Lancet Oncol, 16, 187, 10.1016/S1470-2045(14)71207-0
Khalil, 2015, New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy, Acta Oncol, 54, 1343, 10.3109/0284186X.2015.1061216
Nguyen, 2009, Dose–volume population histogram: a new tool for evaluating plans whilst considering geometrical uncertainties, Phys Med Biol, 54, 935, 10.1088/0031-9155/54/4/008
Gordon, 2010, Coverage optimized planning: Probabilistic treatment planning based on dose coverage histogram criteria, Med Phys, 37, 550, 10.1118/1.3273063
Van Herk, 2000, The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy, Int J Radiat Oncol* Biol* Phys, 47, 1121, 10.1016/S0360-3016(00)00518-6
Ong, 2011, Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery, Int J Radiat Oncol* Biol* Phys, 79, 305, 10.1016/j.ijrobp.2010.02.059
Stambaugh, 2013, Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT sbrt lung treatments, Med Phys, 40, 10.1118/1.4818255
Rao, 2012, Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using image-modulated radiotherapy and volumetric modulated arc therapy, Int J Radiat Oncol* Biol* Phys, 83, e251, 10.1016/j.ijrobp.2011.12.001
Li, 2013, Dosimetric effect of respiratory motion on volumetric-modulated arc therapy-based lung SBRT treatment delivered by TrueBeam machine with flattening filter-free beam, J Appl Clin Med Phys, 14, 195, 10.1120/jacmp.v14i6.4370
Ahnesjö, 1989, Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media: Photon dose calculation, Med Phys, 16, 577, 10.1118/1.596360
Josipovic, 2018, Advanced dose calculation algorithms in lung cancer radiotherapy: Implications for SBRT and locally advanced disease in deep inspiration breath hold, Phys Med, 56, 50, 10.1016/j.ejmp.2018.11.013
Schwarz, 2017, Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review, Phys Med, 36, 126, 10.1016/j.ejmp.2017.02.011
Karlsson, 2021, Estimation of delivered dose to lung tumours considering setup uncertainties and breathing motion in a cohort of patients treated with stereotactic body radiation therapy, Phys Med, 88, 53, 10.1016/j.ejmp.2021.06.015
Menten, 2020, Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging, Radiother Oncol, 145, 88, 10.1016/j.radonc.2019.12.010