Dosimetric robustness of lung tumor photon radiotherapy evaluated from multiple event CT imaging

Physica Medica - Tập 103 - Trang 1-10 - 2022
Nils Olofsson1, Kenneth Wikström1,2, Anna Flejmer1,2,3, Anders Ahnesjö1, Alexandru Dasu1,3
1Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
2Uppsala University Hospital, Uppsala, Sweden
3The Skandion Clinic, Uppsala, Sweden

Tài liệu tham khảo

Wolthaus, 2008, Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients, Int J Radiat Oncol* Biol* Phys, 70, 1229, 10.1016/j.ijrobp.2007.11.042 von Reibnitz, 2018, Stereotactic body radiation therapy (SBRT) improves local control and overall survival compared to conventionally fractionated radiation for stage I non-small cell lung cancer (NSCLC), Acta Oncol, 57, 1567, 10.1080/0284186X.2018.1481292 Ge, 2013, Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors, Int J Radiat Oncol* Biol* Phys, 85, 999, 10.1016/j.ijrobp.2012.09.014 Harada, 2016, Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT), Phys Med, 32, 305, 10.1016/j.ejmp.2015.10.093 Wikström, 2021, Evaluation of irregular breathing effects on internal target volume definition for lung cancer radiotherapy, Med Phys, 48, 2136, 10.1002/mp.14824 Riegel, 2009, Cine computed tomography without respiratory surrogate in planning stereotactic radiotherapy for non–small-cell lung cancer, Int J Radiat Oncol* Biol* Phys, 73, 433, 10.1016/j.ijrobp.2008.04.047 Purdie, 2006, Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy, Acta Oncol, 45, 915, 10.1080/02841860600907345 Cai, 2007, Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging, Int J Radiat Oncol* Biol* Phys, 69, 895, 10.1016/j.ijrobp.2007.07.2322 Rabe, 2020, Real-time 4DMRI-based internal target volume definition for moving lung tumors, Med Phys, d, 1431, 10.1002/mp.14023 Dasnoy-Sumell, 2022, Locally tuned deformation fields combination for 2D cine-MRI-based driving of 3D motion models, Phys Med, 94, 8, 10.1016/j.ejmp.2021.12.010 Shirato, 2006, Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy, Int J Radiat Oncol* Biol* Phys, 64, 1229, 10.1016/j.ijrobp.2005.11.016 Steiner, 2019, Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy, Radiother Oncol, 135, 65, 10.1016/j.radonc.2019.02.019 Nielsen, 2016, Impact of 4D image quality on the accuracy of target definition, Aust Phys Eng Sci Med, 39, 103, 10.1007/s13246-015-0400-3 Keall, 2006, The management of respiratory motion in radiation oncology report of AAPM task group 76 a, Med Phys, 33, 3874, 10.1118/1.2349696 Dhont, 2020, Image-guided radiotherapy to manage respiratory motion: Lung and liver, Clin Oncol, 32, 792, 10.1016/j.clon.2020.09.008 Keall, 2019, See, think, and act: real-time adaptive radiotherapy, Sem Radiat Oncol, 29, 228, 10.1016/j.semradonc.2019.02.005 Bellec, 2022, Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume?, Phys Med, 95, 16, 10.1016/j.ejmp.2022.01.004 Heath, 2009, Incorporating uncertainties in respiratory motion into 4D treatment plan optimization, Med Phys, 36, 3059, 10.1118/1.3148582 Nohadani, 2010, Motion management with phase-adapted 4D-optimization, Phys Med Biol, 55, 5189, 10.1088/0031-9155/55/17/019 Anderle, 2016, In silico comparison of photons versus carbon ions in single fraction therapy of lung cancer, Phys Med, 32, 1118, 10.1016/j.ejmp.2016.08.014 Kostiukhina, 2019, Dynamic lung phantom commissioning for 4D dose assessment in proton therapy, Phys Med Biol, 64, 10.1088/1361-6560/ab5132 Kostiukhina, 2020, Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy, Phys Med Biol, 65, 10.1088/1361-6560/ab8d79 Knopf, 2022, Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy–a comprehensive review, Radiother Oncol, 10.1016/j.radonc.2022.02.018 Badiu, 2022, Improved healthy tissue sparing in proton therapy of lung tumors using statistically sound robust optimization and evaluation, Phys Med, 96, 62, 10.1016/j.ejmp.2022.02.018 Guckenberger, 2007, Four-dimensional treatment planning for stereotactic body radiotherapy, Int J Radiat Oncol Biol Phys, 69, 276, 10.1016/j.ijrobp.2007.04.074 Thomas, 2019, An evaluation of the mid-ventilation method for the planning of stereotactic lung plans, Radiother Oncol, 137, 110, 10.1016/j.radonc.2019.04.031 Vander Veken, 2021, Incorporation of tumor motion directionality in margin recipe: The directional midp strategy, Phys Med, 91, 43, 10.1016/j.ejmp.2021.10.010 de Jong, 2020, Variation in current prescription practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer: Recommendations for prescribing and recording according to the ACROP guideline and ICRU report 91, Radiother Oncol, 142, 217, 10.1016/j.radonc.2019.11.001 Wilke, 2021, Improving interinstitutional and intertechnology consistency of pulmonary SBRT by dose prescription to the mean internal target volume dose, Strahlentherapie Und Onkologie, 197, 836, 10.1007/s00066-021-01799-w Lacornerie, 2014, GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms, Radiat Oncol, 9, 1, 10.1186/s13014-014-0223-5 Bibault, 2015, Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients, PLoS One, 10, 10.1371/journal.pone.0133617 Baumann, 2018, Clinical results of mean GTV dose optimized robotic-guided stereotactic body radiation therapy for lung tumors, Front Oncol, 8, 171, 10.3389/fonc.2018.00171 Klement, 2020, Correlating dose variables with local tumor control in stereotactic body radiation therapy for early-stage non-small cell lung cancer: a modeling study on 1500 individual treatments, Int J Radiat Oncol* Biol* Phys, 107, 579, 10.1016/j.ijrobp.2020.03.005 Benedict, 2010, Stereotactic body radiation therapy: The report of AAPM task group 101, Med Phys, 37, 4078, 10.1118/1.3438081 Grimm, 2011, Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy, J Appl Clin Med Phys, 12, 267, 10.1120/jacmp.v12i2.3368 Fredriksson, 2011, Minimax optimization for handling range and setup uncertainties in proton therapy, Med Phys, 38, 1672, 10.1118/1.3556559 Lax, 2006, Dose distributions in SBRT of lung tumors: Comparison between two different treatment planning algorithms and Monte-Carlo simulation including breathing motions, Acta Oncol, 45, 978, 10.1080/02841860600900050 Leung, 2020, On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization, Radiat Oncol, 15, 1, 10.1186/s13014-020-01573-9 Gregoire, 2010, ICRU report 83, J ICRU, 13, 112 Bradley, 2015, Lancet Oncol, 16, 187, 10.1016/S1470-2045(14)71207-0 Khalil, 2015, New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy, Acta Oncol, 54, 1343, 10.3109/0284186X.2015.1061216 Nguyen, 2009, Dose–volume population histogram: a new tool for evaluating plans whilst considering geometrical uncertainties, Phys Med Biol, 54, 935, 10.1088/0031-9155/54/4/008 Gordon, 2010, Coverage optimized planning: Probabilistic treatment planning based on dose coverage histogram criteria, Med Phys, 37, 550, 10.1118/1.3273063 Van Herk, 2000, The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy, Int J Radiat Oncol* Biol* Phys, 47, 1121, 10.1016/S0360-3016(00)00518-6 Ong, 2011, Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery, Int J Radiat Oncol* Biol* Phys, 79, 305, 10.1016/j.ijrobp.2010.02.059 Stambaugh, 2013, Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT sbrt lung treatments, Med Phys, 40, 10.1118/1.4818255 Rao, 2012, Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using image-modulated radiotherapy and volumetric modulated arc therapy, Int J Radiat Oncol* Biol* Phys, 83, e251, 10.1016/j.ijrobp.2011.12.001 Li, 2013, Dosimetric effect of respiratory motion on volumetric-modulated arc therapy-based lung SBRT treatment delivered by TrueBeam machine with flattening filter-free beam, J Appl Clin Med Phys, 14, 195, 10.1120/jacmp.v14i6.4370 Ahnesjö, 1989, Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media: Photon dose calculation, Med Phys, 16, 577, 10.1118/1.596360 Josipovic, 2018, Advanced dose calculation algorithms in lung cancer radiotherapy: Implications for SBRT and locally advanced disease in deep inspiration breath hold, Phys Med, 56, 50, 10.1016/j.ejmp.2018.11.013 Schwarz, 2017, Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review, Phys Med, 36, 126, 10.1016/j.ejmp.2017.02.011 Karlsson, 2021, Estimation of delivered dose to lung tumours considering setup uncertainties and breathing motion in a cohort of patients treated with stereotactic body radiation therapy, Phys Med, 88, 53, 10.1016/j.ejmp.2021.06.015 Menten, 2020, Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging, Radiother Oncol, 145, 88, 10.1016/j.radonc.2019.12.010