Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation

Biophysik - 2017
Van Dinh Tran1, Mark P. Little1
1Radiation Epidemiology Branch, National Cancer Institute, Rockville, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Czáki F (eds) 2nd International symposium on information theory. Akadémiai Kiadó, Budapest, pp 267–281

Akaike H (1981) Likelihood of a model and information criteria. J Econom 16(1):3–14

Brackenbush LW, Braby LA (1988) Microdosimetric basis for exposure limits. Health Phys 55(2):251–255

Brenner DJ, Sachs RK (2002) Do low dose-rate bystander effects influence domestic radon risks? Int J Radiat Biol 78(7):593–604

Bundesamt für Strahlenschutz. 2016. European Radiobiology archive (ERA) [Online] http://www.bfs.de/EN/bfs/science-research/projects/era/era_node.html . Accessed Oct 2016

Carnes BA, Grahn D (1991) Issues about neutron effects: the JANUS program. Radiat Res 128(1 Suppl):S141–146

Carnes BA, Grahn D, Thomson JF (1989) Dose-response modeling of life shortening in a retrospective analysis of the combined data from the JANUS program at argonne national laboratory. Radiat Res 119(1):39–56

Committee on Health Risks of Exposure to Radon (BEIR VI) (1999) US National Academy of Sciences. National Research Council. Health effects of exposure to radon. National Academy Press, Washington, DC

Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII—phase 2. National Academy Press, Washington, DC

Cox DR (1972) Regression models and life-tables. J R Statist Soc Ser B 34(2):187–220

Creton S, Aardema MJ, Carmichael PL, Harvey JS, Martin FL, Newbold RF, O’Donovan MR, Pant K, Poth A, Sakai A, Sasaki K, Scott AD, Schechtman LM, Shen RR, Tanaka N, Yasaei H (2012) Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs. Mutagenesis 27(1):93–101

Dasu A, Toma-Dasu I (2005) Dose-effect models for risk-relationship to cell survival parameters. Acta Oncol 44(8):829–835

Efron B (1981) Censored data and the bootstrap. J Am Statist Assoc 76(374):312–319

Frieben A (1902) Demonstration eines Cancroids des rechten Handrückens, das sich nach langdauernder Einwirkung von Röntgenstrahlen bei einem 33 jährigen Mann entwickelt hatte. Fortschr Röntgenstr 6:106–106

Fry RJM (1981) Experimental radiation carcinogenesis: what have we learned? Radiat Res 87(2):224–239

Gilchrist TC (1897) A case of dermatitis due to the X-rays. Bull Johns Hopkins Hospital 8(71):17–22

Grahn D, Lombard LS, Carnes BA (1992) The comparative tumorigenic effects of fission neutrons and cobalt-60 γ rays in the B6CF1 mouse. Radiat Res 129(1):19–36

Grahn D, Wright BJ, Carnes BA, Williamson FA, Fox C (1995) Studies of acute and chronic radiation injury at the biological and medical research division, Argonne National Laboratory, 1970–1992: the JANUS program survival and pathology data. Argonne National Laboratory U.O.C., Argonne, Illinois

Haley BM, Paunesku T, Grdina DJ, Woloschak GE (2015) The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose. PLoS One 10(12):e0140989

Hill CK, Buonaguro FM, Myers CP, Han A, Elkind MM (1982) Fission-spectrum neutrons at reduced dose rates enhance neoplastic transformation. Nature 298(5869):67–69

Hill CK, Han A, Elkind MM (1984) Fission-spectrum neutrons at a low dose rate enhance neoplastic transformation in the linear, low dose region (0–10 cGy). Int J Radiat Biol 46(1):11–15

Hoel DG, Carnes BA (2017) Cardiovascular effects of fission neutron or 60Co γ exposure in the B6CF1 mouse. Int J Radiat Biol 93(6):563–568

International Commission on Radiological Protection (1991) 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21(1–3):1–201

International Commission on Radiological Protection (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37(2–4):1–332

Jacob P, Rühm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Is cancer risk of radiation workers larger than expected? Occup Environ Med 66(12):789–796

Little MP (2004) The bystander effect model of Brenner and Sachs fitted to lung cancer data in 11 cohorts of underground miners, and equivalence of fit of a linear relative risk model with adjustment for attained age and age at exposure. J Radiol Prot 24(3):243–255

Little MP, Muirhead CR (2000) Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int J Radiat Biol 76(7):939–953

Miller RC, Randers-Pehrson G, Hieber L, Marino SA, Richards M, Hall EJ (1993) The inverse dose-rate effect for oncogenic transformation by charged particles is dependent on linear energy transfer. Radiat Res 133(3):360–364

Northwestern University. 2016. Janus Tissue Archive. [Online] http://janus.northwestern.edu/janus2/index.php . Accessed Oct 2016]

Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243

Pierce DA, Vaeth M (1991) The shape of the cancer mortality dose-response curve for the A-bomb survivors. Radiat Res 126(1):36–42

Ripley B (2016) R package ‘boot’: version 1.3–18. Comprehensive R Archive Network (CRAN) [Online]. https://cran.r-project.org/web/packages/boot/boot.pdf . Accessed July 2017

Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N (2015) Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. Radiat Environ Biophys 54(4):379–401

Rühm W, Azizova TV, Bouffler SD, Little MP, Shore RE, Walsh L, Woloschak GE (2016) Dose-rate effects in radiation biology and radiation protection. Ann ICRP 45(1 supp):262–279

Shore R, Walsh L, Azizova T, Rühm W (2017) Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor. Int J Radiat Biol 1–15. doi: 10.1080/09553002.2017.1319090

Stevens LG (1896) Injurious effects on the skin. Br Med J 1:998–998

Stevens DL, Bradley S, Goodhead DT, Hill MA (2014) The influence of dose rate on the induction of chromosome aberrations and gene mutation after exposure of plateau phase V79-4 cells with high-LET alpha particles. Radiat Res 182(3):331–337

Therneau TM (2016) R package ‘survival’: version 2.39-5. Comprehensive R Archive Network (CRAN) [Online]. https://cran.r-project.org/web/packages/survival/survival.pdf . Accessed July 2017

Thomson JF, Grahn D (1988) Life shortening in mice exposed to fission neutrons and γ rays. VII. Effects of 60 once-weekly exposures. Radiat Res 115(2):347–360

Thomson JF, Williamson FS, Grahn D, Ainsworth EJ (1981a) Life shortening in mice exposed to fission neutrons and γ rays I. Single and short-term fractionated exposures. Radiat Res 86(3):559–572

Thomson JF, Williamson FS, Grahn D, Ainsworth EJ (1981b) Life shortening in mice exposed to fission neutrons and γ rays II. Duration-of-life and long-term fractionated exposures. Radiat Res 86(3):573–579

Thomson JF, Williamson FS, Grahn D (1983) Life shortening in mice exposed to fission neutrons and γ rays. III. neutron exposures of 5 and 10 rad. Radiat Res 93(1):205–209

Thomson JF, Williamson FS, Grahn D (1985a) Life shortening in mice exposed to fission neutrons and γ rays. IV. Further studies with fractionated neutron exposures. Radiat Res 103(1):77–88

Thomson JF, Williamson FS, Grahn D (1985b) Life shortening in mice exposed to fission neutrons and γ rays. V. Further studies with single low doses. Radiat Res 104(3):420–428

Thomson JF, Williamson FS, Grahn D (1986) Life shortening in mice exposed to fission neutrons and γ rays. VI. Studies with the white-footed mouse, Peromyscus leucopus. Radiat Res 108(2):176–188

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1977) Sources and effects of ionizing radiation. 1977 report to the General Assembly, with annexes. Annex B. Natural sources of radiation, p 35–114. [Online]. http://www.unscear.org/unscear/en/publications/1977.html . Accessed Aug 2017

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1993) Sources and effects of ionizing radiation. UNSCEAR 1993 report to the General Assembly, with scientific annexes. E.94.IX.2:1-922. [Online]. http://www.unscear.org/unscear/en/publications/1993.html . Accessed Aug 2017

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume II: effects. E.00.IX.4:1–566. [Online]. http://www.unscear.org/unscear/en/publications/2000_2.html . Accessed Aug 2017

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008) UNSCEAR 2006 Report. Annex A. Epidemiological studies of radiation and cancer. 13–322. [Online]. http://www.unscear.org/unscear/en/publications/2006_1.html . Accessed Aug 2017

Wakeford R, Tawn EJ (2010) The meaning of low dose and low dose-rate. J Radiol Prot 30(1):1–3