Dosage- and site-dependent retention of black carbon and polycyclic aromatic hydrocarbons in farmland soils via long-term biochar addition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, KärcherB KD, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171
Boot CM, Haddix M, Paustian K, Cotrufo MF (2015) Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire. Biogeosciences 12:3029–3039. https://doi.org/10.5194/bg-12-3029-2015
Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36:1299–1310. https://doi.org/10.1016/j.orggeochem.2005.03.011
Cai W, Du Z, Zhang A, He C, Shi Q, Tian L, Zhang P, Li L, Wang J (2020) Long-term biochar addition alters the characteristics but not the chlorine reactivity of soil-derived dissolved organic matter. Water Res 185:116260. https://doi.org/10.1016/j.watres.2020.116260
Chang Z, Tian L, Li F, Wu M, Steinberg CEW, Pan B, Xing B (2020) Organo-mineral complexes protect condensed organic matter as revealed by benzene-polycarboxylic acids. Environ Pollut 260:113977. https://doi.org/10.1016/j.envpol.2020.113977
Chen H, Gao Y, Li J, Fang Z, Bolan N, Bhatnagar A, Gao B, Hou D, Wang S, Song H, Yang X, Shaheen SM, Meng J, Chen W, Rinklebe J, Wang H (2022a) Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Res 1:4. https://doi.org/10.1007/s44246-022-00005-5
Chen Q, Lan P, Wu M, Lu M, Pan B, Xing B (2022b) Biochar mitigates allelopathy through regulating allelochemical generation from plants and accumulation in soil. Carbon Res 1:6. https://doi.org/10.1007/s44246-022-00003-7
Chen S, Liao C (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123. https://doi.org/10.1016/j.scitotenv.2005.08.047
Chen Y, Sun K, Wang Z, Zhang E, Yang Y, Xing B (2022c) Analytical methods, molecular structures and biogeochemical behaviors of dissolved black carbon. Carbon Res 1:23. https://doi.org/10.1007/s44246-022-00022-4
Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895. https://doi.org/10.1021/es050191b
Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycles 21:GB3005. https://doi.org/10.1029/2006GB002798
Dittmar T (2008) The molecular level determination of black carbon in marine dissolved organic matter. Org Geochem 39:396–407. https://doi.org/10.1016/j.orggeochem.2008.01.015
Dong H, Coffin ES, Sheng Y, Duley ML, Khalifa YM (2023) Microbial reduction of Fe(III) in nontronite: role of biochar as a redox mediator. Geochim Cosmochim Acta 345:102–116. https://doi.org/10.1016/j.gca.2023.01.027
Fang Z, Yang W, Stubbins A, Chen M, Li J, Jia R, Li Q, Zhu J, Wang B (2021) Spatial characteristics and removal of dissolved black carbon in the western Arctic Ocean and Bering Sea. Geochim Cosmochim Acta 304:178–190. https://doi.org/10.1016/j.gca.2021.04.024
Feng Y, Zhang X, Jia Y, Cui N, Hao W, Li H, Gong D (2021) High-resolution assessment of solar radiation and energy potential in China. Energy Convers Manag 240:114265. https://doi.org/10.1016/j.enconman.2021.114265
Garcia B, Alves O, Rijo B, Lourinho G, Nobre C (2022) Biochar: production, applications, and market prospects in Portugal. Environments 9:95. https://doi.org/10.3390/environments9080095
Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51. https://doi.org/10.1016/j.gca.2010.11.029
Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29:811–819. https://doi.org/10.1016/S0146-6380(98)00194-6
Goldberg ED (1985) Black carbon in the environment: properties and distribution. John Wiley and Sons, New York, United States https://www.osti.gov/biblio/5473086
Guan S, Liu S, Liu R, Zhang J, Ren J, Cai H, Lin X (2019) Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. J Integr Agric 18:1496–1507. https://doi.org/10.1016/S2095-3119(19)62643-2
Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson O (2006) Black carbon: the reverse of its dark side. Chemosphere 63:365–377. https://doi.org/10.1016/j.chemosphere.2005.08.034
Krauss M, Wilcke W (2002) Sorption strength of persistent organic pollutants in particle-size fractions of urban soils. Soil Sci Soc Am J 66:430–437. https://doi.org/10.2136/sssaj2002.4300
Kuo L, Louchouarn P, Herbert BE (2011) Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85:797–805. https://doi.org/10.1016/j.chemosphere.2011.06.074
Kusmierz M, Oleszczuk P, Kraska P, Palys E, Andruszczak S (2016) Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–279. https://doi.org/10.1016/j.chemosphere.2015.12.010
Li X, Hou L, Li Y, Liu M, Lin X, Cheng L (2016) Polycyclic aromatic hydrocarbons and black carbon in intertidal sediments of China coastal zones: concentration, ecological risk, source and their relationship. Sci Total Environ 566–567:1387–1397. https://doi.org/10.1016/j.scitotenv.2016.05.212
Liu B, Li H, Li H, Zhang A, Rengel Z (2021) Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. Glob Change Biol Bioenergy 13:257–268. https://doi.org/10.1111/gcbb.12766
Lubecki L, Oen AMP, Breedveld GD, Zamojska A (2019) Vertical profiles of sedimentary polycyclic aromatic hydrocarbons and black carbon in the Gulf of Gdańsk (Poland) and Oslofjord/Drammensfjord (Norway), and their relation to regional energy transitions. Sci Total Environ 646:336–346. https://doi.org/10.1016/j.scitotenv.2018.07.300
Masiello CA, Druffel EJS (1998) Black carbon in deep-sea sediments. Science 280:1911–1913. https://doi.org/10.1126/science.280.5371.1911
Meredith W, Ascough PL, Bird MI, Large DJ, Snape CE, Sun Y, Tilston EL (2012) Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim Cosmochim Acta 97:131–147. https://doi.org/10.1016/j.gca.2012.08.037
Mumtaz MM, George JD (1995) Toxicological profile for polycyclic aromatic hydrocarbons. Agency for Toxic Substances and Disease Registry, Georgia, United States https://wwwn.cdc.gov/tsp/toxprofiles/toxprofiles.aspx?id=122&tid=25
Oleszczuk P (2006) Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil. Chemosphere 65:1616–1626. https://doi.org/10.1016/j.chemosphere.2006.03.007
Park KS, Sims RC, Dupont RR, Doucette WJ, Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ Toxicol Chem 9:187–195. https://doi.org/10.1002/etc.5620090208
Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808. https://doi.org/10.1016/j.envpol.2010.11.003
Reemtsma T, Mehrtens J (1997) Determination of polycyclic aromatic hydrocarbon (PAH) leaching from contaminated soil by a column test with on-line solid phase extraction. Chemosphere 35:2491–2501. https://doi.org/10.1016/S0045-6535(97)00317-2
Rombola AG, Fabbri D, Baronti S, Vaccari FP, Genesio L, Miglietta F (2019) Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere 219:662–670. https://doi.org/10.1016/j.chemosphere.2018.11.178
Shi M, Wang X, Shao M, Lu L, Ullah H, Zheng H, Li F (2023) Resource utilization of typical biomass wastes as biochars in removing plasticizer diethyl phthalate from water: characterization and adsorption mechanisms. Front Environ Sci Eng 17:5. https://doi.org/10.1007/s11783-023-1605-4
Sun J, Li H, Wang Y, Du Z, Rengel Z, Zhang A (2022) Biochar and nitrogen fertilizer promote rice yield by altering soil enzyme activity and microbial community structure. Glob Change Biol Bioenergy 14:1266–1280. https://doi.org/10.1111/gcbb.12995
Sun Y, Tang J, Mo Y, Geng X, Zhong G, Yi X, Yan C, Li J, Zhang G (2021) Polycyclic aromatic carbon: a key fraction determining the light absorption properties of methanol-soluble brown carbon of open biomass burning aerosols. Environ Sci Technol 55:15724–15733. https://doi.org/10.1021/acs.est.1c06460
Tang C, Zhu Y, Wei Y, Zhao F, Wu X, Tian X (2022) Spatiotemporal characteristics and influencing factors of sunshine duration in China from 1970 to 2019. Atmosphere 13:2015. https://doi.org/10.3390/atmos13122015
USEPA (1989) Risk assessment guidance for superfund volume I: human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Environmental Protection Agency, Washington, DC, United States https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e
USEPA (1996) Soil screening guidance: User's guide. Environmental Protection Agency, Washington, DC, United States https://semspub.epa.gov/work/HQ/175238.pdf
Vaezzadeh V, Yi X, Thomes MW, Bong CW, Lee CW, Zakaria MP, Wang A, Roslin PNB, Zhong G, Zhang G (2021) Use of molecular markers and compound-specific isotopic signatures to trace sources of black carbon in surface sediments of peninsular Malaysia: impacts of anthropogenic activities. Mar Chem 237:104032. https://doi.org/10.1016/j.marchem.2021.104032
Wang L, Deng J, Yang X, Hou R, Hou D (2023a) Role of biochar toward carbon neutrality. Carbon Res 2:2. https://doi.org/10.1007/s44246-023-00035-7
Wang Q, Liu M, Yu Y, Du F, Wang X (2014) Black carbon in soils from different land use areas of Shanghai, China: level, sources and relationship with polycyclic aromatic hydrocarbons. Appl Geochem 47:36–43. https://doi.org/10.1016/j.apgeochem.2014.04.011
Wang Y, Joseph S, Wang X, Weng Z, Mitchell DRG, Nancarrow M, Taherymoosavi S, Munroe P, Li G, Lin Q, Chen Q, Flury M, Cowie A, Husson O, Van Zwieten L, Kuzyakov Y, Lehmann J, Li B, Shang J (2023b) Inducing inorganic carbon accrual in subsoil through biochar application on calcareous topsoil. Environ Sci Technol 57:1837–1847. https://doi.org/10.1021/acs.est.2c06419
Wiedemeier DB, Brodowski S, Wiesenberg GLB (2015) Pyrogenic molecular markers: linking PAH with BPCA analysis. Chemosphere 119:432–437. https://doi.org/10.1016/j.chemosphere.2014.06.046
Wiedemeier DB, Lang SQ, Gierga M, Abiven S, Bernasconi SM, Früh-Green GL, Hajdas I, Hanke UM, Hilf MD, McIntyre CP, Scheider MPW, Smittenberg RH, Wacker L, Wiesenberg GLB, Schmidt MWI (2016) Characterization, quantification and compound-specific isotopic analysis of pyrogenic carbon using benzene polycarboxylic acids (BPCA). J Vis Exp 111:e53922. https://doi.org/10.3791/53922
Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil - a review. J Plant Nutr Soil Sci 163:229–248. https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
WRB IWG (2022) World Reference Base for soil resources. International soil classification system for naming soils and creating legends for soil maps. International Union of Soil Sciences (IUSS). https://www.fao.org/3/i3794en/I3794en.pdf
Xiao G, Zhao Z, Liang L, Meng F, Wu W, Guo Y (2019) Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China plain using optimized farming practices. Agri Water Manage 212:172–180. https://doi.org/10.1016/j.agwat.2018.09.011
Yang W, Guo L (2014) Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico. Geophys Res Lett 41:7619–7625. https://doi.org/10.1002/2014GL061912
Zhang Q, Wang X, Du Z, Liu X, Wang Y (2013a) Impact of biochar on nitrate accumulation in an alkaline soil. Soil Res 51:521–528. https://doi.org/10.1071/SR13153
Zhang Q, Wang Y, Wu Y, Wang X, Du Z, Liu X, Song J (2013b) Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature. Soil Sci Soc Am J 77:1478–1487. https://doi.org/10.2136/sssaj2012.0180
Zhou H, Fang H, Zhang Q, Wang Q, Chen C, Mooney SJ, Peng X, Du Z (2019) Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur J Soil Sci 70:291–300. https://doi.org/10.1111/ejss.12732
Ziolkowski LA, Chamberlin AR, Greaves J, Druffel ERM (2011) Quantification of black carbon in marine systems using the benzene polycarboxylic acid method: a mechanistic and yield study. Limnol Oceanogr Methods 9:140–149. https://doi.org/10.4319/lom.2011.9.140
Ziolkowski LA, Druffel ERM (2010) Aged black carbon identified in marine dissolved organic carbon. Geophys Res Lett 37:L16601. https://doi.org/10.1029/2010GL043963