Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis

Topics in Catalysis - Tập 61 - Trang 136-141 - 2017
Shun Hayashi1, Ryo Ishida1, Shingo Hasegawa1, Seiji Yamazoe1,2,3, Tatsuya Tsukuda1,2
1Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
2Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto, Japan
3Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan

Tóm tắt

It is known that small gold clusters (average diameter: ~ 1.2 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibit size-specific catalysis in aerobic oxidation reactions. A recent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) study of Au:PVP revealed that Au clusters with the magic sizes of 34 and 43 were preferentially produced. Here, we reported how the doping of palladium (Pd) into Au:PVP affected the catalytic performance. MALDI-MS analysis of Pd-doped Au:PVP showed that a single Pd atom was selectively doped by co-reduction of Au and Pd precursor ions and that PdAu33 and PdAu43 were produced as the dominant species. Extended X-ray absorption fine structure (EXAFS) analysis indicated that a Pd atom was located at the exposed surface of the Au:PVP clusters. It was found that single Pd atom doping enhanced the catalytic activity for aerobic oxidation of benzyl alcohol and provided hydrogenation catalysis in a chemoselective manner to the C=C bonds over the C=O bonds.

Tài liệu tham khảo

Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408 Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Adv Catal 55:1–126 Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736–739 Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144–10147 Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374–9375 Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528–532 Tsukuda T, Tsunoyama H, Sakurai H (2011) Chem Asian J 6:736–748 Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) J Am Chem Soc 131:7086–7093 Okumura M, Kitagawa Y, Kawakami T, Haruta M (2008) Chem Phys Lett 459:133–136 Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499–7505 Pal R, Wang LM, Pei Y, Wang LS, Zeng XC (2012) J Am Chem Soc 134:9438–9445 Tsunoyama H, Ichikuni N, Tsukuda T (2008) Langmuir 24:11327–11330 Tsunoyama H, Tsukuda T (2009) J Am Chem Soc 131:18216–18217 Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141–2143 Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE (1992) J Chem Phys 96:3319–3329 de Heer WA (1993) Rev Mod Phys 65:611–676 Ishida R, Arii S, Kurashige W, Yamazoe S, Koyasu K, Negishi Y, Tsukuda T (2016) Chin J Catal 37:1656–1661 Lechtken A, Schooss D, Stairs JR, Blom MN, Furche F, Morgner N, Kostko O, von Issendorff B, Kappes MM (2007) Angew Chem Int Ed 46:2944–2948 Gu X, Bulusu S, Li X, Zeng XC, Li J, Gong XG, Wang LS (2007) J Phys Chem C 111:8228–8232 Pande S, Huang W, Shao N, Wang LM, Khetrapal N, Mei WN, Jian T, Wang LS, Zeng XC (2016) ACS Nano 10:10013–10022 Chaki NK, Tsunoyama H, Negishi Y, Sakurai H, Tsukuda T (2007) J Phys Chem C 111:4885–4888 Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Angew Chem Int Ed 42:1297–1300 Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) ACS Catal 2:1519–1523 Yamazoe S, Yoskamtorn T, Takano S, Yadnum S, Limtrakul J, Tsukuda T (2016) Chem Rec 16:2338–2348 Bruma A, Negreiros FR, Tsukuda T, Johnson RL, Fortunelli A, Li ZY (2013) Nanoscale 5:9620–9625 Yamazoe S, Koyasu K, Tsukuda T (2014) Acc Chem Res 47:816–824 Yudha SS, Dhital RN, Sakurai H (2011) Tetrahedron Lett 52:2633–2637 Nishimura S, Yakita Y, Katayama M, Higashimine K, Ebitani K (2013) Catal Sci Technol 3:351–359 Hayashi N, Sakai Y, Tsunoyama H, Nakajima A (2014) Langmuir 30:10539–10547 Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K (2010) Phys Chem Chem Phys 12:6219 – 6225 Negishi Y, Kurashige W, Kobayashi Y, Yamazoe S, Kojima N, Seto M, Tsukuda T (2013) J Phys Chem Lett 4:3579–3583 Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576 Ito LN, Johnson BJ, Mueting AM, Pignolet LH (1989) Inorg Chem 26:2026–2028 Jiang DE, Dai S (2009) Inorg Chem 48:2720–2722 Kacprzak KA, Lehtovaara L, Akola J, Lopez-Acevedo O, Häkkinen H (2009) Phys Chem Chem Phys 11:7123–7129 Walter M, Moseler M (2009) J Phys Chem C 113:15834–15837 Christensen SL, MacDonald MA, Chatt A, Zhang P (2012) J Phys Chem C 116:26932–26937 Tofanelli MA, Ni TW, Phillips BD, Ackerson CJ (2016) Inorg Chem 55:999–1001 Miura H, Endo K, Ogawa R, Shishido T (2017) ACS Catal 7:1543–1553 Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Nat Mater 11:49–52 McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306 Lucci FR, Darby MT, Mattera MFG, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes CH (2016) J Phys Chem Lett 7:480–485