Dopamine modulation in the basal ganglia locks the gate to working memory

Journal of Computational Neuroscience - Tập 20 Số 2 - Trang 153-166 - 2006
Aaron J. Gruber1, Peter Dayan2, Boris Gutkin3, Sara A. Solla4
1Biomedical Engineering, Northwestern University, Chicago, USA
2Gatsby Computational Neuroscience Unit, University College London, UK
3Recepteurs et Cognition, Departement de Neuroscience, Institut Pasteur, Pasis, France
4Physiology, Northwestern University, Chicago, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexander, G. E. and Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci, 13(7):266–271.

Beiser, D. G. and Houk, J. C. (1998). Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol, 79:3168–3188.

Beiser, D. G., Hua, S. E., and Houk, J.C. (1997). Network models of the basal ganglia. Curr Opin Neurobiol, 7(2):185–190.

Braver, T. S. and Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: the gating model Prog Brain Res, 121:327–349.

Brunel, N. and Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comp Neurosci, 11(1):63–85.

Camperi, M. and Wang, X. J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J Comput Neurosci, 5(4):383–405.

Chafee, M. and Goldman-Rakic, P. (1998). Matching patterns of activity in primate prefrontal area 8a and pariental area 7ip neurons during a spatial working memory task. J Neurophysiol, 79:2919–2940.

Cohen, J. D., Braver, T. S., and Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol, 12(2):223–229.

Colby, C. L., Duhamel, J. R., and Goldberg, M. E. (1996). Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol, 76(5):2841–2852.

Compte, A., Brunel, N., Goldman-Rakic, P. S., and Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex, 10(9):910–923.

Costa, A., Peppe, A., Dell’ Agnello, G., Carlesimo, G. A., Murri, L., Bonuccelli, U., and Caltagirone, C. (2003). Dopaminergic modulation of visual-spatial working memory in parkinson’s disease. Dement Geriatr Cogn Disord, 15(2):55–66.

Destexhe, A., Bal, T., McCormick, D. A., and Sejnowski, T. J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol, 76(3):2049–70.

Djurfeldt, M., Ekeberg, O., and Graybiel, A. (2001). Cortex-basal ganglia interaction and attractor states. Neurocomputing, 38:537–579.

Dreher, J. C., Guigon, E., and Burnod, Y. (2002). A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J Cog Neurosci, 14(6):853–865.

Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol, 83(3):1733–1750.

Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cog, Affect & Behav Neurosci, 1(2):137–160.

Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorso-lateral prefrontal cortex. J Neurophysiol, 61(2):331–349.

Fuster, J. (1995). Memory in the cerebral cortex. MTT Press, Cambridge, MA.

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3):477–485.

Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by Dl receptors in the rat striatum in vivo. J Neurosci, 17(15):5972–5978.

Goto, Y. and O’Donnell, P. (2001). Synchronous activity in the hippocampus and nucleus accumbens in vivo. J Neurosci, 21(4):1529–2401.

Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neurosci, 41(1): 1–24.

Graybiel, A. M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Cur Opin Neurobiol, 5:733–741.

Groenewegen, H. J., Wright, C. I., and Uylings, H. B. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. J Psychopharmacol, 11(2):99–106.

Gruber, A. J., Solla, S. A., Surmeier, D. J., and Houk, J. C. (2003). Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol, 90(2): 1095–1114.

Gurney, K., Prescott, T. J., and Redgrave, P. (2001). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern, 84:411–423.

Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., and Ermentrout, G. B. (2001). Turning on and off with excitation: the rote of spike-timing and synchrony in sustained neural activity. J Comput Neurosci, 11(2):121–134.

Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat, 26(4):317–330.

Hansel, D. and Mato, G. (2001). Existence and stability of persistent states in large neuronal networks. Phys Rev Lett, 86(18):4175–4178.

Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., and Galarraga, E. (1997). D1 receptor activation enhances evoked discharge in entotriatal medium spiny neurons by modulating an L-type Ca 2+ conductance. J Neurosci, 17(9):3334–3342.

Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K., and Lu, X. (1998). Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learing. Neurobiol Learn Mem, 70(1/2):137–149.

Kalivas, P. W., Jackson, D., Romanidies, A., Wyndham, L., and Duffy, P. (2001). Involvement of pallidothalamic circuitry in working memory. Neurosci, 104(1):129–136.

Kawagoe, R., Takikawa, Y., and Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci, 1(5):411–416.

Kawagoe, R., Takikawa, Y., and Hikosaka, O. (2004). Reward-predicting activity of dopamine and caudate neurons - a possible mechanism of motivational control of saccadic eye movement. J Neurophysiol, 91(2):1013–1024.

Kermadi, I. and Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. J Neurophysiol, 74(3):911–933.

Kiyatkin, E. A. and Rebec, G. V. (1996). Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol, 75(1):142–153.

Koos, T. and Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by gabaergic interneurons. Nat Neurosci, 2(5):467–472.

Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., and Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. J Neurosci, 15(1 Pt2):928–41.

Laing, C. R. and Chow, C. C. (2001). Stationary bumps in networks of spiking neurons. Neural Comput, 13(7): 1473–1494.

Lange, K. W., Robbins, T. W., Marsden, C. D., James, M., Owen, A. M., and Paul, G. M. (1992). L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacol, 107(2–3):394–404.

Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., and Owen, A. M. (2004). Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. Eur J Neurosci, 19(3):755–760.

Lidow, M. S., Williams, G. V., and Goldman-Rakic, P. S. (1998). The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacologic Sci, 19(4): 136–140.

Lynd-Balta, E. and Haber, S. N. (1994). The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neurosci, 59(3):625–640.

Menon, V., Anagnoson, R. T., Glover, G. H., and Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. Neuroreport, 11(16):3641–3645.

Middleton, F. A. and Strick, P. L. (2002). Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex, 12(9):926–935.

Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol, 50(4):381–325.

Miyoshi, E., Wietzikoski, S., Camplessei, M., Silveira, R., Takahashi, R. N., and Da Cunha, C. (2002). Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull, 58(7):41–47.

Muller, U., von Cramon, D. Y., and Pollmann, S. (1998). Dl- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci, 18(7):2720–2728.

Nakamura, K. and Hikosaka, O. (2004). Reward-dependent saccade bias is attenuated by local application of dopamine antagonists in the primante caudate nucleus. In Soci Neurosci Abstr, San Diego, CA.

Nicola, S. M., Surmeier, D. J., and Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci, 23:185–215.

Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P., Lange, K. W., and Robbins, T. W. (1992). Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115(6):1727–1751.

Plenz, D. (2003). When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci, 26(8):436–443.

Postle, B. R. and D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Cog Brain Res, 8(2): 107–115.

Powell, K. D. and Goldberg, M. E. (2000). Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J Neurophysiol, 84(1):301–10.

Roitman, M. F., Stuber, G. D., Phillips, P. E., Wightman, R. M., and Carelli, R. M. (2004). Dopamine operates as a subsecond modulator of food seeking. J Neurosci, 24(6):1265–1271.

Romanides, A. J., Duffy, P., and Kalivas, P. W. (1999). Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neurosci, 92(1):97–106.

Sawaguchi, T. and Goldman-Rakic, P. S. (1994). The role of Dl-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol, 71(2):515–528.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. J Neurophysiol, 80(1):1–17.

Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci, 13(3):900–913.

Servan-Schreiber, D., Carter, C. S., Bruno, R. M., and Cohen, J. D. (1998). Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task. Biol Psychiatry, 43(10):723–729.

Servan-Schreiber, D., Printz, H., and Cohen, J. D. (1990). A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science, 249:892–895.

Seung, H. S. (1996). How the brain keeps the eyes still. Proc Natl Acad Sci USA, 93(23):13339–13344.

Tepper, J. M., Koos, T., and Wilson, C. J. (2004). Gabaergic microcircuits in the neostriatum. Trends Neurosci, 27(11): 662–9.

Terman, D., Rubin, J. E., Yew, A. C., and Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci, 22(7):2963–2976.

Vergara, R., Rick, C., Hernandez-Lopez, S., Laville, J. A., Guzman, J. N., Galarraga, E., Surmeier, D. J., and Bargas, J. (2003). Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol, 553(Pt 1):169–182.

Watanabe, M., Hikosaka, K., Sakagami, M., and Shirakawa, S. (2002). Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci, 22(6):2391–2400.

Williams, G. V. and Goldman-Rakic. P. S. (1995). Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature, 376(6541):572–575.

Wilson, C. J. and Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci, 16(7):2397–2410.

Zahrt, J., Taylor, J. R., Mathew, R. G., and Arnsten, A. F. (1997). Supranormal stimulation of Dl dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 17(21):8528–8535.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J Neurosci, 16(6):2112–2126.