Dominant Li+ ion conduction in Li+/Na+ mixed crystal, 15NaI∙LiBH4
Tóm tắt
In the present work, the conduction ions in 15NaI∙LiBH4 are investigated by secondary ion mass spectroscopy (SIMS) and galvanostatic measurements. An all-solid-state half-cell is constructed using 15NaI∙LiBH4 and a Sn film as the solid electrolyte and working electrode, respectively. SIMS depth profiles in a charged Sn film indicate that 7Li+ is the dominant charging ion, while the intensity of 23Na+ ions is one order of magnitude less than that of 7Li+. These results clearly indicate that the dominant conduction ion in 15NaI∙LiBH4 is Li+ despite its low concentration (6 mol%). The possibility of Na+ conduction is further investigated by charging a Na/Sn cell using a three-layered electrolyte with 15NaI∙LiBH4 sandwiched by a known Na+ conductor, 75Na2S∙25P2S5. The charging of Sn is interrupted for the three-layered electrolyte, while Sn can be smoothly charged using 75Na2S∙25P2S5 as the single electrolyte. These results confirm that the conduction of Na+ in 15NaI∙LiBH4 is not as significant as that of the guest Li+ ions and strongly suggest that the Li+ ions are the dominant conduction species. The results show the potential of Na compounds as the base materials in novel solid electrolytes for all-solid-state lithium batteries.
Tài liệu tham khảo
Machida N, Kobayashi K, Nishikawa Y, Shigematsu T (2004) Solid State Ionics 175(1-4):247–250
Hikima K, Suzuki K, Taminato S, Hirayama M, Yasuno S, Kanno R (2019) Chem Lett 48(3):192–195
Reddy MV, Julien CM, Mauger A, Zaghib K (2020) Nanomaterials 10:1–80
Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X (2020) Energy Environ Sci 13(5):1429–1461
Kobayashi Y, Takeuchi T, Tabuchi M, Ado K, Kageyama H (1999) J Power Sources 81–82:853–858
Matsuo M, Nakamori Y, Orimo SI, Maekawa H, Takamura H (2007) Appl Phys Lett 91:2007–2009
Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, Orimo S (2009) J Am Chem Soc 131(3):894–895
Tang WS, Yoshida K, Soloninin AV, Skoryunov RV, Babanova OA, Skripov AV, Dimitrievska M, Stavila V, Orimo SI, Udovic TJ (2016) ACS Energy Lett 1(4):659–664
Unemoto A, Ikeshoji T, Yasaku S, Matsuo M, Stavila V, Udovic TJ, Orimo S (2015) Chem Mater 27(15):5407–5416
Unemoto A, Yoshida K, Ikeshoji T, Orimo SI (2016) Mater Trans 57:1639–1644
Miyazaki R, Kurihara D, Hihara T (2016) J Solid State Electrochem 20(10):2759–2764
Miyazaki R, Sakaguchi I, Weitzel K, Hihara T (2018) Electrochim Acta 283:1188–1194
Miyazaki R, Hihara T (2020) J Solid State Electrochem 24(7):1687–1693
Jung SC, Jung DS, Choi JW, Han YK (2014) J Phys Chem Lett 5(7):1283–1288
Courtney I, Tse J (1998) Phys Rev B - Condens Matter Mater Phys 58(23):15583–15588
Jung SC, Kim HJ, Kang YJ, Han YK (2016) J Alloys Compd 688:158–163
Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Nat Commun 3:2–6
Blanchard D, Nale A, Sveinbjörnsson D, Eggenhuisen TM, Verkuijlen MHW (2015) Suwarno, Vegge T, Kentgens APM, De Jongh PE. Adv Funct Mater 25:184–192
Gulino V, Barberis L, Ngene P, Baricco M, De Jongh PE (2020) ACS Appl Energy Mater 3(5):4941–4948
Miyazaki R, Kurihara D, Hayashi D, Furughori S, Shomura M, Hihara T (2017) MRS Adv 2(7):389–394
Gomes S, Hagemann H, Yvon K (2002) J Alloys Compd 346:5
Renaudin G, Gomes S, Hagemann H, Keller L, Yvon K (2004) J Alloys Compd 375(1-2):98–106
Abrahams SC, Kalnajs J (1954) J Chem Phys 22(3):434–436
Su D, Wang C, Ahn H, Wang G (2013) Phys Chem Chem Phys 15(30):12543–12550
Sakuda A, Hayashi A, Tatsumisago M (2013) Sci Rep 3:1–5
Miyazaki R, Hihara T (2019) J Power Sources 427:15–20
Wu EA, Kompella CS, Zhu Z, Lee JZ, Lee SC, Chu IH, Nguyen H, Ong SP, Banerjee A, Meng YS (2018) ACS Appl Mater Interfaces 10(12):10076–10086
Mouahid FE, Zahir M, Maldonado-Manso P, Bruque S, Losilla ER, Aranda MAG, Rivera A, Leon C, Santamaria J (2001) J Mater Chem 11(12):3258–3263
Harder H, Bunde A, Dieterich W (1986) J Chem Phys 85(7):4123–4128
Maass P (1999) J Non Cryst Solids 255(1):35–46