Dolomitization, gypsum calcitization and silicification in carbonate–evaporite shallow lacustrine deposits

Sedimentology - Tập 64 Số 4 - Trang 1147-1172 - 2017
Ma Ángeles Bustillo1, Ildefonso Armenteros Armenteros2, Pedro Huerta Hurtado3
1Departamento de Geología Museo Nacional de Ciencias Naturales CSIC c/José Gutiérrez Abascal 2 28006 Madrid Spain
2Departamento de Geología Universidad de Salamanca 37071 Salamanca Spain
3Departamento de Geología Escuela Politécnica Superior de Ávila Universidad de Salamanca Avd./Hornos Caleros n°50 05003 Ávila Spain

Tóm tắt

AbstractThis paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from −9·02 to −5·83‰ δ13CPDB and −7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from −8·93 to −3·96‰ δ13CPDB and −5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.

Từ khóa


Tài liệu tham khảo

10.1016/j.gca.2004.08.036

Adeli S., 2015, Geologic evolution of the eastern Eridania basin: implications for aqueous processes in the southern highlands of Mars, Planet. Space Sci., 98, 128

Al‐Aasm I.S., 1990, Stable isotope analysis of multiple carbonate samples using selective acid extraction, Chem. Geol., 80, 119

10.1016/S0012-8252(02)00106-X

10.1016/0037-0738(92)90138-H

10.1016/0037-0738(92)90020-R

10.1201/9781439833544

10.1080/14400958908527952

10.1016/S0031-0182(96)00052-1

10.1016/S0037-0738(98)00146-8

Armenteros I., 1996, Sedimentología, paleoalteraciones y diagénesis en la unidad Carbonática de Cihuela (Eoceno superior de la cuenca de Almazán, Soria), Geogaceta, 20, 266

10.1016/S0037-0738(98)00067-0

10.1130/2006.2416(08)

10.1016/0037-0738(95)00002-P

Armenteros I., 2006, Ciclos climáticos en un sistema lacustre marginal perenne carbonatado‐evaporítico. Formación Deza, Eoceno superior, cuenca de Almazán, Geo‐temas, 9, 25

Armenteros I., 2015, Dolomitización y calcitización de facies lacustres carbonatadas y yesíferas (Eoceno superior, Formación Deza, cuenca de Almazán, España), Geogaceta, 57, 11

10.1016/j.sedgeo.2007.06.001

Ayora C., 1999, Dinámica de las interacciones entre agua y minerals en medios de baja temperature (meteorización, Diagénesis, Metasomatismo), 197

10.1130/0016-7606(1983)94<1415:PARODM>2.0.CO;2

10.1016/j.sedgeo.2005.12.008

10.1111/j.1365-3091.2009.01121.x

Bustillo M.A., 2010, Carbonates in Continental Settings: Processes, Facies and Applications, 153

10.1016/j.sedgeo.2006.12.006

Bustillo M.A., 1999, Asociaciones arcillosas en llanuras lutíticas y medios lacustres efímeros (Eoceno, Cuenca de Almazán), Geogaceta, 25, 51

10.1016/S0037-0738(01)00234-2

10.1080/00387010.2011.610410

10.1016/j.sedgeo.2016.02.007

10.1016/0009-2541(94)00161-Z

10.1007/BF03175788

10.1016/j.sedgeo.2014.07.005

Cerling T.E., 1993, Stable isotopes in soil carbonates. Climate Change in Continental Isotopic Records, Geophys. Monogr., 78, 2178

10.1180/000985598545516

10.1346/CCMN.2003.0510413

10.1038/205587a0

10.1016/j.earscirev.2008.10.005

10.2110/cor.94.01.0239

10.1007/BF00402354

Folk R., 1971, Length‐slow chalcedony: a new testament for vanished evaporates, J. Sed. Petrol., 41, 1045

10.1046/j.1365-3091.2001.00388.x

10.1346/CCMN.2010.0580101

Goldsmith J.R., 1961, Lattice constants of the calcium‐magnesium carbonates, Am. Mineral., 46, 453

10.1002/9781444303698.ch2

Hardy R.G., 1988, Techniques in Sedimentology, 191

Huerta P.(2007)El Paleógeno de la cuenca de Almazán. Relleno de una cuenca piggyback. Ph. D. Thesis Universidad de Salamanca Salamanca 340pp.

10.1016/j.palaeo.2009.12.008

10.1111/j.1365-3091.2011.01231.x

Jones B.F., 1988, Sepiolite and palygorskite, Rev. Mineral. Geochem., 19, 631

10.1007/BFb0009863

10.1016/0016-7037(76)90051-X

10.2475/03.2010.02

10.1016/S0031-0182(96)00153-8

10.1017/S0016756811000124

10.1002/2014JE004707

Machel H.G., 1991, Luminescence Microscopy and Spectroscop: Qualitative and Quantitative Applications, 37

10.1016/0031-0182(91)90033-N

10.1016/0016-7037(77)90249-6

10.1002/(SICI)1096-9837(199908)24:8<731::AID-ESP7>3.0.CO;2-0

10.1111/j.1365-3091.1982.tb00084.x

10.1063/1.1671982

Pérez Jiménez J.L.(2010)Sedimentología silicificaciones y otros procesos diagenéticos en las unidades Intermedia y Superior del Mioceno de la Cuenca de Madrid (zonas NE NW y W)[Degree of Doctor Facultad de Geológicas]: Universidad Complutense Madrid 336 p. ISBN 978‐84‐694‐9538‐4.

Pierre C., 1988, Carbonate replacements after sulfate evaporites in the middle Miocene of Egypt, J. Sed. Petrol., 5, 446

10.1111/j.1365-3091.1989.tb02092.x

Platt N.H., 1992, Palustrine carbonates and the Florida everglades: towards an exposure index for the fresh‐water environment?, J. Sed. Res., 62, 1058

10.1046/j.1365-3091.2003.00574.x

10.1016/S0031-0182(00)00124-3

Retallack G.J., 2012, Criteria for distinguishing microbial mats and earths, Soc. Econ. Paleont. Mineral. Spec. Pap, 101, 136

10.1073/pnas.1305403110

10.1016/0031-0182(91)90046-T

10.1130/SPE289-p1

Salas R., 2001, Peri‐Tethys Memoir: 6, Peri‐Thetyan Rift/. Wrench Basins and Passive Margins, 145

10.2110/jsr.2006.122

10.1016/S0037-0738(00)00175-5

10.1111/j.1365-3091.1989.tb01544.x

10.1016/j.gca.2009.07.009

10.1016/0168-9622(90)90009-2

Talbot M.R., 1994, Sedimentation in low‐gradient desert margin systems: a comparison of the Late Triassic of northwest Somerset (England) and the late Quaternary of east‐central Australia, Geol. Soc. Am. Spec. Pap., 289, 97

10.1016/0031-0182(90)90114-M

Thiry M., 1991, Pedogenic and groundwater silcretes at Stuart Creek Opal Field, South Australia, J. Sed. Petrol., 6, 111

10.1016/S0037-0738(98)00086-4

Valero L., 2015, Linking sedimentation rates and large‐scale architecture for facies prediction in non‐marine basins. (Paleogene, Almazán Basin, Spain), Basin Res., 27, 1

10.1016/j.palaeo.2007.12.017

10.1016/j.chemgeo.2007.06.032

10.1016/S0037-0738(01)00258-5

10.1016/S0012-8252(00)00022-2

10.2110/pec.94.50.0159