Does the Hurst index matter for option prices under fractional volatility?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alòs, E., Yang, Y.: A closed-form option pricing approximation formula for a fractional Heston model. Working Paper (2014)
Backus, D.K., Zin, S.E.: Long-memory inflation uncertainty: evidence from the term structure of interest rates. J Credit Bank 25, 681–700 (1993)
Baillie, R.T., Bollerslev, T., Mikkelsen, H.O.: Fractionally integrated generalized autoregressive conditional heteroskedasticity. J Econom 74, 3–300 (1996)
Benth, F.E.: On arbitrage-free pricing of weather derivative based on fractional Brownian motion. Appl Math Finance 10, 303–324 (2003)
Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math Finance 8, 291–323 (1998)
Comte, F., Coutin, L., Renault, E.: Affine fractional stochastic volatility models. Ann Finance 8, 337–378 (2012)
Fukasawa, M.: Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch 15, 635–654 (2011)
Funahashi, H.: A chaos expansion approach under hybrid volatility models. Quant Finance 14, 1923–1936 (2014)
Funahashi, H., Kijima, M.: A chaos expansion approach for the pricing of contingent claims. J Comput Finance 18, 27–58 (2015)
Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing Smile Risk: London: Wilmott Magazine (2002)
Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev Financ Stud 6, 327–343 (1993)
Hu, Y., Öksendal, B.: Fractional white noise calculus and applications in finance. Quantum Probab Relat Top 6, 1–32 (2003)
Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J Finance 42, 281–300 (1987)
Jäckel, P.: Stochastic volatility models - past, present and future. In: Wilmott, P. (ed.) The Best of Wilmott 1: Incorporating the Quantitative Finance Review, pp. 355–377. Wiley, Chischester (2004). https://leseprobe.buch.de/images-adb/ca/97/ca97d440-3cc4-4020-b3be-039dd4d93f7f.pdf
Kijima, M., Tam, C.M.: Fractional Brownian motions in financial models and their Monte Carlo simulation. In: Chan, V. (Wai Kin) (ed.) Theory and Applications of Monte Carlo Simulations. InTech (2013). doi: 10.5772/53568
Mandelbrot, B.B.: Fractals and Scaling in Finance, Discontinuity, Concentration, Risk: New York: Springer (1997)
Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn: Berlin: Springer (2006)
Schöbel, R., Zhu, J.: Stochastic volatility with Ornstein–Uhlenbeck process: an extension. Eur Finance Rev 4, 23–46 (1999)
Scott, L.: Option pricing when the variance changes randomly: estimation and an application. J Financ Quant Anal 22, 419–438 (1987)
Sottinen, T.: Fractional Brownian motion, random walks and binary market models. Finance Stoch 5, 343–355 (2001)