Does reservoir host mortality enhance transmission of West Nile virus?

Theoretical Biology and Medical Modelling - Tập 4 - Trang 1-9 - 2007
Ivo M Foppa1,2, Andrew Spielman2
1Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, USA
2Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA

Tóm tắt

Since its 1999 emergence in New York City, West Nile virus (WNV) has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Inspection of the Ross-Macdonald expression of the basic reproductive number (R0) suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined.

Tài liệu tham khảo

ProMED-mail: West Nile-Like Virus – USA (New York City). 1999,http://www.promedmail.org/pls/promed/f?p=2400:1202:6802029088134808349::NO::F2400_P1202_CHECK_DISPLAY,F2400_P1202_PUB_MAIL_ID:X,7084 CDC: Update: West Nile-like viral encephalitis-New York, 1999. MMWR Morb Mortal Wkly Rep. 1999, 48 (39): 890-892. Nash D, Mostashari F, Fine A, Miller J, O'Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M, Campbell GL, Roehrig JT, Gubler DJ, Shieh WJ, Zaki S, Smith P: The outbreak of West Nile virus infection in the New York City area in 1999. New England Journal of Medicine. 2001, 344 (24): 1807-1814. 10.1056/NEJM200106143442401. Hayes EB, Komar N, Nasci RS, Montgomery SP, O'Leary DR, Campbell GL: Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005, 11 (8): 1167-1173. Lorono-Pino MA, Blitvich BJ, Farfan-Ale JA, Puerto FI, Blanco JM, Marlenee NL, Rosado-Paredes EP, Garcia-Rejon JE, Gubler DJ, Calisher CH, Beaty BJ: Serologic evidence of West Nile virus infection in horses, Yucatan State, Mexico. Emerg Infect Dis. 2003, 9 (7): 857-859. Mattar S, Edwards E, Laguado J, Gonzalez M, Alvarez J, Komar N: West Nile virus antibodies in Colombian horses. Emerg Infect Dis. 2005, 11 (9): 1497-1498. Pupo M, Guzman MG, Fernandez R, Llop A, Dickinson FO, Perez D, Cruz R, Gonzalez T, Estevez G, Gonzalez H, Santos P, Kouri G, Andonova M, Lindsay R, Artsob H, Drebot M: West Nile Virus infection in humans and horses, Cuba. Emerg Infect Dis. 2006, 12 (6): 1022-1024. Work TH, Hurlbut HS, Taylor RM: Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am J Trop Med Hyg. 1955, 4 (5): 872-888. Bin H, Grossman Z, Pokamunski S, Malkinson M, Weiss L, Duvdevani P, Banet C, Weisman Y, Annis E, Gandaku D, Yahalom V, Hindyieh M, Shulman L, Mendelson E: West Nile fever in Israel 1999–2000: from geese to humans. Ann N Y Acad Sci. 2001, 951: 127-142. Malkinson M, Banet C, Weisman Y, Pokamonski S, King R, Deubel V: Intercontinental transmission of West Nile virus by migrating white storks. Emerging Infectious Diseases. 2001, 7 (3): 540- Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ: Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999, 286 (5448): 2333-2337. 10.1126/science.286.5448.2333. CDC: West Nile virus activity-United States, January 1–December 1, 2005. MMWR Morb Mortal Wkly Rep. 2005, 54 (49): 1253-1256. Hochachka WM, Dhondt AA, McGowan KJ, Kramer LD: Impact of West Nile Virus on American Crows in the Northeastern United States, and Its Relevance to Existing Monitoring Programs. EcoHealth. 2004, 1: 60-68. 10.1007/s10393-004-0015-8. Komar N: West Nile viral encephalitis. Rev Sci Tech. 2000, 19: 166-176. Ludwig GV, Calle PP, Mangiafico JA, Raphael BL, Danner DK, Hile JA, Clippinger TL, Smith JF, Cook RA, McNamara T: An outbreak of West Nile virus in a New York City captive wildlife population. Am J Trop Med Hyg. 2002, 67 (1): 67-75. Reisen W, Lothrop H, Chiles R, Madon M, Cossen C, Woods L, Husted S, Kramer V, Edman J: West Nile virus in California. Emerg Infect Dis. 2004, 10 (8): 1369-1378. Anderson RM, May RM: Infectious diseases of humans. 1992, Oxford, UK: Oxford University Press, first paperback Andersson H, Britton T: Stochastic Epidemic Models and Their Statistical Analysis, Volume 151 of Lecture Notes in Statistics. 2000, New York: Springer, 1 Macdonald G: The analysis of equilibrium in malaria. Trop Dis Bull. 1952, 49 (9): 813-829. Ross R: Malarial Fever. Its Cause, Prevention, and Treatment. 1902, London: University Press of Liverpool, ninth Wonham MJ, de Camino-Beck T, Lewis MA: An epidemiological model for West Nile virus: invasion analysis and control applications. Proc Biol Sci. 2004, 271 (1538): 501-507. 10.1098/rspb.2003.2608. Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H: A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol. 2005, 67 (5): 1107-1133. 10.1016/j.bulm.2005.01.002. Cruz-Pacheco G, Esteva L, Montano-Hirose JA, Vargas C: Modelling the dynamics of West Nile Virus. Bull Math Biol. 2005, 67 (6): 1157-1172. 10.1016/j.bulm.2004.11.008. Diekmann O, Heesterbeek JAP, Metz JAJ: On the Definition and the Computation of the Basic Reproduction Ratio R0 in Models For Infectious-Diseases in Heterogeneous Populations. J Math Biol. 1990, 28 (4): 365-382. 10.1007/BF00178324. Hamer W: Epidemic Disease in England. Tha Lancet. 1906, i: 733-739. McGee CE, Schneider BS, Girard YA, Vanlandingham DL, Higgs S: Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species. Am J Trop Med Hyg. 2007, 76 (3): 424-430. Reisen WK, Fang Y, Martinez V: Is nonviremic transmission of West Nile virus by Culex mosquitoes (Diptera: Culicidae) nonviremic?. J Med Entomol. 2007, 44 (2): 299-302. 10.1603/0022-2585(2007)44[299:INTOWN]2.0.CO;2. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M: Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003, 9 (3): 311-322. Fang Y, Reisen WK: Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. Am J Trop Med Hyg. 2006, 75 (3): 480-485. Saul A: Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J. 2003, 2: 32-10.1186/1475-2875-2-32. Edman JD, Webber LA, Kalen HW: Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am J Trop Med Hyg. 1972, 21 (4): 487-491. Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ, Miller BR, Nicholas K: Differential virulence of West Nile strains for American crows. Emerg Infect Dis. 2004, 10 (12): 2161-2168. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P: West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006, 4 (4): e82-10.1371/journal.pbio.0040082. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC: Emerging vectors in the Culex pipiens complex. Science. 2004, 303 (5663): 1535-1538. 10.1126/science.1094247. Ward MP, Raim A, Yaremych-Hamer S, Lampman R, Novak RJ: Does the roosting behavior of birds affect transmission dynamics of West Nile virus?. Am J Trop Med Hyg. 2006, 75 (2): 350-355. Anderson JF, Andreadis TG, Main AJ, Kline DL: Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes. Am J Trop Med Hyg. 2004, 71: 112-119. Drummond CL, Drobnack J, Backenson PB, Ebel GD, Kramer LD: Impact of trap elevation on estimates of abundance, parity rates, and body size of Culex pipiens and Culex restuans (Diptera: Culicidae). J Med Entomol. 2006, 43 (2): 177-184. 10.1603/0022-2585(2006)043[0177:IOTEOE]2.0.CO;2. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR: Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006, 12 (3): 468-474. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR: Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis. 2004, 4: 71-82. 10.1089/153036604773083013. Allison AB, Mead DG, Gibbs SE, Hoffman DM, Stallknecht DE: West Nile virus viremia in wild rock pigeons. Emerg Infect Dis. 2004, 10 (12): 2252-2255. Yaremych SA, Warner RE, Mankin PC, Brawn JD, Raim A, Novak R: West Nile virus and high death rate in American crows. Emerg Infect Dis. 2004, 10 (4): 709-711. Gibbs SE, Allison AB, Yabsley MJ, Mead DG, Wilcox BR, Stallknecht DE: West Nile virus antibodies in avian species of Georgia, USA: 2000–2004. Vector Borne Zoonotic Dis. 2006, 6: 57-72. 10.1089/vbz.2006.6.57. Bell JA, Brewer CM, Mickelson NJ, Garman GW, Vaughan JA: West Nile virus epizootiology, central Red River Valley, North Dakota and Minnesota, 2002–2005. Emerg Infect Dis. 2006, 12 (8): 1245-1247. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD: Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci. 2006, 273 (1599): 2327-2333. 10.1098/rspb.2006.3575. Reisen WK, Barker CM, Carney R, Lothrop HD, Wheeler SS, Wilson JL, Madon MB, Takahashi R, Carroll B, Garcia S, Fang Y, Shafii M, Kahl N, Ashtari S, Kramer V, Glaser C, Jean C: Role of corvids in epidemiology of west Nile virus in southern California. J Med Entomol. 2006, 43 (2): 356-367. 10.1603/0022-2585(2006)043[0356:ROCIEO]2.0.CO;2. Hodgson JC, Spielman A, Komar N, Krahforst CF, Wallace GT, Pollack RJ: Interrupted blood-feeding by Culiseta melanura (Diptera: Culicidae) on European starlings. J Med Entomol. 2001, 38: 59-66. Ezenwa VO, Godsey MS, King RJ, Guptill SC: Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci. 2006, 273 (1582): 109-117. 10.1098/rspb.2005.3284. Westerdahl H, Waldenstrom J, Hansson B, Hasselquist D, von Schantz T, Bensch S: Associations between malaria and MHC genes in a migratory songbird. Proc Biol Sci. 2005, 272 (1571): 1511-1518. 10.1098/rspb.2005.3113. Lord CC, Day JF: Simulation studies of St. Louis encephalitis and West Nile viruses: the impact of bird mortality. Vector Borne Zoonotic Dis. 2001, 1 (4): 317-329. 10.1089/15303660160025930. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD: Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg. 2004, 71 (4): 493-500. Wonham MJ, Lewis MA, Renclawowicz J, van den Driessche P: Transmission assumptions generate conflicting predictions in host-vector disease models: a case study in West Nile virus. Ecol Lett. 2006, 9 (6): 706-725. 10.1111/j.1461-0248.2006.00912.x.