Does parameterization influence the performance of slope stability model results? A case study in Rio de Janeiro, Brazil
Tóm tắt
We produce factor of safety (FOS) and slope failure susceptibility index (SFSI) maps for a 4.4-km2 study area in Rio de Janeiro, Brazil, in order to explore the sensitivity of the geotechnical and geohydraulic parameterization on the model outcomes. Thereby, we consider parameter spaces instead of combinations of discrete values. SFSI is defined as the fraction of tested parameter combinations within a given space yielding FOS <1. We repeat our physically based calculations for various parameter spaces, employing the infinite slope stability model and the sliding surface model of the software r.slope.stability for testing the geotechnical parameters and the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) for testing the geohydraulic parameters. Whilst the results vary considerably in terms of their conservativeness, the ability to reproduce the spatial patterns of the observed landslide release areas is relatively insensitive to the variation of the parameterization as long as there is sufficient pattern in the results. We conclude that landslide susceptibility maps yielded by catchment-scale physically based models should not be interpreted in absolute terms and suggest that efforts to develop better strategies for dealing with the uncertainties in the spatial variation of the key parameters should be given priority in future slope stability modelling efforts.
Tài liệu tham khảo
Baum RL, Savage WZ, Godt JW (2008) TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0. USGS Open File Report 2008–1159. https://pubs.usgs.gov/of/2008/1159/downloads/pdf/OF08-1159.pdf. Accessed 07 December 2015
Box GE (1976) Science and statistics. J Am Stat Assoc 71:791–799. doi:10.2307/2286841
Burton A, Bathurst JC (1998) Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ Geol 35(2):89–99. doi:10.1007/s002540050296
Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, New York
Coelho Netto AL (2005) Interface florestal-urbana e os desastres naturais relacionados à água no maciço da Tijuca: desafios ao planejamento urbano numa perspectiva sócio- ambiental. Revista do Departamento de Geografia 16:46–60. doi:10.7154/RDG.2005.0016.0005
Cohen D, Lehmann P, Or D (2009) Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water Resour Res 45:W10436. doi:10.1029/2009WR007889
Conti A (2012) Desenvolvimento de um modelo matemático transiente para previsão de escorregamentos planares em encostas. Dissertation, PUC-Rio
Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031. doi:10.1029/ 91WR02985
Duncan JM, Wright SG (2005) Soil strength and slope stability. Wiley, USA
Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1:39–43. doi: 10.1109/MHS.1995.494215
El-Ramly H, Morgenstern NR, Cruden DM (2005) Probabilistic assessment of stability of a cut slope in residual soil. Géotechnique 55:77–84. doi:10.1680/geot.2005.55.1.77
Fan L, Lehmann P, Or D (2016) Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides. Water Resources Research 52(3):1781-1799
Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomery DR, Greenberg H (2001) Condicionantes Geomorfológicos dos Deslizamentos nas Encostas: Avaliação de Metodologias e Aplicação de Modelo de Previsão de Áreas Susceptíveis. Revista Brasileira de Geomorfologia 2(1):51–71. doi:10.20502/rbg.v2i1.8
Fischer JT (2013) A novel approach to evaluate and compare computational snow avalanche simulation. Nat Hazards Earth Syst Sci 13(6):1655–1667. doi:10.5194/nhess-13-1655-2013
Formetta G, Capparelli G, Versace P (2015) Evaluating performances of simplified physically based models for landslide susceptibility. Hydrol Earth Syst Sci Discuss 12:13217–13256. doi:10.5194/hessd-12-13217-2015
Frohn D, Müller J (2015) Spatial distribution of clay minerals and soil depth in the Collazzone area, Umbria, central Italy. Master thesis, University of Natural Resources and Life Sciences (BOKU), Vienna
Galindo MSV (2013) Desenvolvimento de uma Metodologia para Determinação da Viscosidade de Solos. Dissertation, PUC-Rio. doi: 10.17771/PUCRio.acad.22977
Galindo MSV, De Campos TMP (2014) Desenvolvimento de uma Metodologia para Determinação da Viscosidade de Solos. XVII Congresso de Mecânica dos Solos e Engenharia Geotécnica, Goiânia - GO - Brasil
Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226. doi:10.1016/j.enggeo.2008.03.019
GRASS Development Team (2016) Geographic resources analysis support system (GRASS) software. Open Source Geospatial Foundation Project. http://grass.osgeo.org. Accessed 11/05/2016
Griffiths DW, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenviron 130(5):507–518. doi:10.1061/(ASCE)1090-0241(2004)130:5(507)
Griffiths DV, Huang J, Dewolfe GF (2011) Numerical and analytical observations on long and infinite slopes. Int J Numer Anal Methods Geomech 35(5):569–585. doi:10.1002/nag.909
Guimarães RF (2000) A modelagem matemática na avaliação de áreas de risco a deslizamentos: o exemplo das bacias dos rios Quitite e Papagaio (RJ). PhD Thesis, Federal University of Rio de Janeiro
Guimarães RF, Montgomery DR, Greeberg HM, Fernandes NF, Gomes RAT, Carvalho Júnior OA (2003) Parametrization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108. doi:10.1016/S0013-7952(02)00263-6
Guimarães RF, Gomes RAT, Carvalho Júnior OA, Martins ES, Oliveira SN, Fernandes NF (2009) Análise temporal das áreas susceptíveis a escorregamentos rasos no Parque Nacional da Serra dos Órgãos (RJ) a partir de dados pluviométricos. Revista Brasileira de Geociências 39(1):190–198. http://rbg.sbgeo.org.br/index.php/rbg/article/view/1451. Accessed: 30/11/2015
Guzzetti F (2006) Landslide hazard and risk assessment. PhD Thesis, University of Bonn
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1
Hay LE, Leavesley GH, Clark MP, Markstrom SL, Viger RJ, Umemoto M (2006) Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin. J Am Water Resour Assoc:877–890. doi:10.1111/j.1752-1688.2006.tb04501.x
Hovland HJ (1977) Three-dimensional slope stability analysis method. J Geotech Eng Div 103(9):971–986
Hurtado Espinoza LO (2010) Avaliação do Potencial de Liquefação de Solos Coluvionares do Rio de Janeiro. Dissertation, PUC-Rio. doi: 10.17771/PUCRio.acad.17520
Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):897–1910. doi:10.1029/2000WR900090
Jia N, Mitani Y, Xie M, Djamaluddin I (2012) Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area. Comput Geotech 45:1–10. doi:10.1016/j.compgeo.2012.04.007
McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi:10.1016/S0016-7061(03)00223-4
Mergili M, Chu H-J (2015) Integrated statistical modelling of spatial landslide probability. Nat Hazards Earth Syst Sci Discuss 3:5677–5715. doi:10.5194/nhessd-3-5677-2015
Mergili M, Fellin W, Moreiras SM, Stötter J (2012) Simulation of debris flow in the Central Andes based on open source GIS: possibilities, limitations, and parameter sensitivity. Nat Hazards 61:1051–1081. doi:10.1007/s11069-011-9965-7
Mergili M, Marchesini I, Alvioli M, Metz M, Schneider-Muntau B, Rossi M, Guzzetti F (2014a) A strategy for GIS-based 3-D slope stability modelling over large areas. Geosci Model Dev 7:2969–2982. doi:10.5194/gmd-7-2969-2014
Mergili M, Marchesini I, Rossi M, Guzzetti F, Fellin W (2014b) Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 206:178–195. doi:10.1016/j.geomorph.2013.10.008
Mergili M, Marchesini I, Rossi M, Alvioli M, Schneider-Muntau B, Cardinali M, Ardizzone F, Fiorucci F, Valigi D, Santangelo M, Bucci F, Guzzetti F (2015) Considering parameter uncertainty in a GIS-based sliding surface model for large areas. In Schweckendiek T, van Tol AF, Pereboom D, van Staveren MT, Cools PMCBM (eds) Geotechnical Safety and Risk V (Proceedings of the 5th International Symposium for Geotechnical Safety and Risk (ISGSR2015), Rotterdam, 13–16 October 2015): 952–957. IOS Press. doi: 10.3233/978-1-61499-580-7-952
Mesquita MGBF, Moraes SOA (2004) Dependência entre a condutividade hidráulica saturada e atributos físicos do solo. Ciência Rural 34(3):963–969. doi:10.1590/S0103-84782004000300052
Mesquita MGBF, Moraes SO, Corrente JE (2002) More adequate probability distributions to represent the saturated soil hydraulic conductivity. Sci Agric 59(4):789–793. doi:10.1590/S0103-90162002000400025
Mesquita MGBF, Moraes SO, Peruchi F, Tereza MC (2007) Alternativa para caracterização da condutividade Hidráulica saturada do solo utilizando probabilidade de ocorrência. Ciência Agrotécnica 31(6):1605–1609. doi:10.1590/S1413-70542007000600001
Milledge DG, Griffiths DV, Lane SN, Warburton J (2012) Limits on the validity of infinite length assumptions for modelling shallow landslides. Earth Surface Process and Landforms 37:1158–1166. doi:10.1002/esp.3235
Miqueletto M, Vargas Jr. EA (2009) Avaliação tridimensional da estabilidade de encostas em escala de bacia de drenagem através do método de talude infinito incorporando o efeito do fluxo saturado-não saturado. Anais da 5ª Conferencia de Estabilidade de Encosta, São Paulo, SP, Brasil
Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171. doi:10.1029/93WR02979
Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling—a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30. doi:10.1002/hyp.3360050103
Muntohar AS, Liao H-J (2010) Rainfall infiltration: infinite slope model for landslides triggering by rainstorm. Nat Hazards 54:967–984. doi:10.1007/s11069-010-9518-5
Neteler M, Mitasova H (2008) Open source GIS: a GRASS GIS approach. Springer, New York. doi:10.1007/978-0-387-68574-8
Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, BC. doi: 10.1.1.41.5799
Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards Earth System Sciences 13:2833–2849. doi:10.5194/nhess-13-2833-2013
Petrovic I (2008) Probabilistic stability analysis of sanitary landfill Jakusevec. Proceedings of the 1st Middle European Conference on Landfill Technology, Budapest, Hungary
R Core Team (2016) R: a language and environment for statistical computing, R foundation for statistical computing. https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf. Accessed: 11/05/2016
Saltelli A, Annoni P (2010) How to avoid a perfunctory sensitivity analysis. Environmental Modelling and Soft ware 25:1508–1517. doi:10.1016/j.envsoft.2010.04.012
Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of American Journal 70:1569–1578. doi:10.2136/sssaj2005.0117
Tobutt DC (1982) Monte Carlo simulation methods for slope stability. Comput Geosci 8(2):199–208. doi:10.1016/0098-3004(82)90021-8
Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surveys Geophysics 21:241–255. doi:10.1023/A:1006794127521
Van Westen CJ, Terlien MTJ (1996) An approach towards deterministic landslide hazard analysis in GIS: a case study from Manizales (Colombia). Earth Surfaces Processes Landforms 21:853–868. doi:10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
VanWesten CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. doi:10.1007/s10064-005-0023-0
Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res 44:W00B09. doi:10.1029/2007WR006720, 2
Wang Y, Cao Z, Au SK (2010) Pratical reliability analysis of slope stability by advanced Monte Carlo simulations in spreadsheet. Can Geotech J 48(1):162–172. doi:10.1139/T10-044
Wilkinson PL, Anderson MG, Lloyd DM (2002) An integrated hydrological model for slope stability. Earth Surface Processes Landform 27:1267–1283. doi:10.1002/esp.409
Xie M, Esaki T, Zhou G, Mitani Y (2003) Three-dimensional stability evaluation of landslides and a sliding process simulation using a new geographic information systems component. Environ Geol 43:503–512. doi:10.1007/s00254-002-0655-3
Xie M, Esaki T, Cai M (2004a) A time–space based approach for mapping rainfall induced shallow landslide hazard. Environ Geol 46:840–850. doi:10.1007/s00254-004-1069-1
Xie M, Esaki T, Cai M (2004b) A GIS-based method for locating the critical 3D slip surface in a slope. Comput Geotech 31:267–277. doi:10.1016/j.compgeo.2004.03.003
Xie M, Esaki T, Qiu C, Wang C (2006) Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Comput Geotech 33:260–274. doi:10.1016/j.compgeo.2006.07.003