Does habitat fragmentation affect landscape-level temperatures? A global analysis

Springer Science and Business Media LLC - Tập 35 - Trang 1743-1756 - 2020
Clarice B. Mendes1, Jayme A. Prevedello1
1Landscape Ecology Lab, Department of Ecology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Tóm tắt

Habitat fragmentation per se (habitat subdivision independent of habitat loss) is a major driver of biodiversity change, potentially due to its impacts on climate. Habitat fragmentation may make landscapes hotter by increasing the amount of habitat edges, but can reduce landscape-level temperatures due to the “vegetation breeze” phenomenon. The plausibility of these two alternative hypotheses is unclear, as no study analyzed the effects of habitat fragmentation per se on temperature. We quantify, for the first time, the impacts of habitat fragmentation on landscape-level temperature across the globe. We analyzed satellite data on forest cover and three climatic variables: mean daily temperature, albedo and evapotranspiration. The analyses were performed separately for tropical, temperate, and boreal regions. We compared the climatic variables between pairs of landscapes with similar amount of forest, but different levels of forest fragmentation (number of patches). Habitat fragmentation reduced landscape-level temperature in all climatic regions. The magnitude of this cooling was stronger in the tropics and weaker in the boreal region due to different evapotranspiration rates. This landscape-scale cooling contradicts local-scale studies, which have indicated that edge effects rise local temperatures. However, habitat fragmentation may intensify vegetation breeze, resulting in final cooling at the landscape scale. Habitat fragmentation leads to colder landscapes. We propose a new conceptual model to unify local (edge-induced) and landscape-level effects of habitat fragmentation on temperature, advancing the understanding of the consequences of habitat fragmentation on climate globally.

Tài liệu tham khảo

Alkama S, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604 Anderson RG, Canadell JG, Randerson JT, Jackson RB, Hungate BA, Baldocchi DD, Ban-Weiss GA, Bonan GB, Caldeira K, Cao L, Diffenbaugh NS, Gurney KR, Kueppers LM, Law BE, Luyssaert S, O’Halloran TL (2011) Biophysical considerations in forestry for climate protection. Front Ecol Environ 9:174–182 Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2016) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88 Avissar R, Liu Y (1996) Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J Geophys Res 101:7499–7518 Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55:2666–2689 Baldocchi D, Kelliher FM, Black TA, Jarvis P (2000) Climate and vegetation controls on boreal zone energy exchange. Global Change Biol 6:69–83 Barton K (2018) MuMIn: multi-model inference. R package version 1.40.4 Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121 Bernaschini ML, Trumper E, Valladares G, Salvo A (2019) Are all edges equal? Microclimatic conditions, geographical orientation and biological implications in a fragmented forest. Agric Ecosyst Environ 280:142–151 Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E, Warmerdam F, Ooms J, Rundel C (2018) rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.3-3 Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449 Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer-Verlag, New York Chen B, Arain MA, Khomik M, Trofymow JA, Grant RF, Kurz WA, Yeluripati J, Wang Z (2013) Evaluating the impacts of climate variability and disturbance regimes on the historic carbon budget of a forest landscape. Agric Forest Meteorol 180:265–280 Chen J, Franklin TF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forest. Ecol App 5:74–86 Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology—variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297 Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio 37:522–527 Corlett RT (2014) Forest fragmentation and climate change. In: Kettle CJ, Koh LP (eds) Global forest fragmentation. CAB International, Wallingford, pp 69–78 Didham RK, Ewers RM (2014) Edge effects disrupt vertical stratification of microclimate in a temperate forest canopy. Pac Sci 68:493–508 Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30 Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64 Duveiller G, Hooker J, Cescatti A (2018) The mark of vegetation change on Earth’s surface energy balance. Nat Commun 9:679 EROS Us Geological Survey (1996) GTPO30 global digital elevation model. EROS Data Center, Sioux Falls Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142 Ewers RM, Marsh CJ, Wearn OR (2010) Making statistics biologically relevant in fragmented landscapes. Trends Ecol Evolut 25:699–704 Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515 Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23 Fahrig L, Arroyo-Rodriguez V, Bennett J, Boucher-Lalonde V, Cazeta E, Currie D, Eigenbrod F, Ford A, Harrison S, Jaeger J, Koper N, Martin A, Martin JL, Metzger JP, Morrison P, Rhodes J, Saunders D, Simberloff D, Smith A, Tischendorf L, Vellend M, Watling J (2019) Is habitat fragmentation bad for biodiversity? Biol Cons 230:179–186 Fetcher N, Oberbauer SF, Strain BR (1985) Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int J Biometeorol 29:145–155 Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Cons 226:9–15 Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang XM (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 144:168–182 Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman and Littlefield Publishers, Lanham Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, New York Grace JB (2008) Structural equation modeling for observational studies. J Wildl Manag 72:14–22 Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052 Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853 Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. PNAS 19:8650–8655 Hennenberg KJ, Goetze D, Szarzynski J, Orthmann B, Reineking B, Steinke I, Porembski S (2008) Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic Appl Ecology 9:275–285 Hijmans RJ, Etten J, Sumner M, Cheng J, Bevan A, Bivand R, Busetto L, Canty M, Forrest D, Ghosh A, Golicher D, Gray J, Greenberg JA, Hiemstra P, Hingee K, Karney C, Mattiuzzi M, Mosher S, Nowosad J, Pebesma E, Lamigueiro OP, Racine EB, Rowlingson B, Shortridge A, Venables B, Wueest R (2017) raster: geographic data analysis and modeling. R package version 2.6-7 Hofmeister J, Hošek J, Brabec M, Střalková R, Mýlová P, Bouda M, Pettit JL, Rydval M, Svoboda M (2019) Microclimate edge effect in small fragments of temperate forests in the context of climate change. For Ecol Manage 448:48–56 Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Caldeira K, Diffenbaugh NS, Field CB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Pataki DE (2008) Protecting climate with forests. Environ Res Lett 3:044006 Jin M, Dickinson RE (2010) Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ Res Lett 5:044004 Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185 Kerbauy GB (2004) Plant Physiology. Guanabara Koogan, Rio de Janeiro Lafortezza R, Coomes DA, Kapos V, Ewers RM (2010) Assessing the impacts of forest fragmentation in New Zealand: scaling from survey plots to landscapes. Glob Ecol Biogeogr 19:741–754 Latimer CE, Zuckerberg B (2016) Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 40:158–170 Laurance WF, Laurance SG, Delamonica P (1998) Tropical forest fragmentation and greenhouse gas emissions. For Ecol Manage 110:173–180 Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673 Li ZL, Tang BH, Wu H (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37 Li Y, Zhao M, Mildrexler DJ, Motesharrei S, Mu K, Kalnay E, Zhao F, Li S, Wang K (2016) Potential and actual impacts of deforestation and afforestation on land surface temperature. J Geophys Res-Atmos 121:14372–14386 Li Y, Zhao M, Motesharrei S, Mu K, Kalnay E, Li S (2015) Local cooling and warming effects of forests based on satellite observations. Nat Commun 6:6603 Liang QL (2012) Global land surface products: albedo product data collection (1985–2010). Beijing Normal University, Beijing Liu NF, Liu Q, Wang LZ, Liang SL, Wen JG, Qu Y, Liu SH (2013) A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol Earth Syst Sci 17:2121–2129 Liu Q, Wang L, Qu Y, Liu N, Liu S, Tang H, Liang S (2013) Preliminary evaluation of the long-term GLASS albedo product. Int J Digit Earth 6:69–95 Magnano LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318 Malcolm JR (1994) Edge effects of central Amazonian forest fragments. Ecology 75:2438–2445 Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194 McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345 Miliaresis GC, Argialas DP (2002) Quantitative representation of mountain objects extracted from the global digital elevation model (GTOPO30). Int J Remote Sens 23:949–964 Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, Hurk BJJM, Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agr Forest Meteorol 151:765–773 Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800 Murcia C (1995) Edge effects in fragmented forests: implications for conservation. TREE 10:58–62 NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) (2007) USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available from: https://doi.org/10.5067/modis/mod16a3.006 Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470 Nowakowski AJ, Frishkoff LO, Agha M, Todd BD, Scheffers BR (2018) Changing thermal landscapes: merging climate science and landscape ecology through thermal biology. Curr Landsc Ecol Rep 3:57–72 Peng S, Piao S, Zeng Z, Ciais P, Zhou L, Li LZX, Myneni RB, Yin Y, Zeng H (2013) Afforestation in China cools local land surface temperature. Proc Natl Acad Sci USA 111:2915–2919 Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Willigen BV (2018) nlme: Linear and nonlinear mixed effects models. R package version 3.1-137 Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39:62–71 Prevedello JA, Winck GR, Weber MM, Nichols E, Sinervo B (2019) Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14:e0213368 Development Core Team R (2017) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Ranney JW, Bruner MC, Levenson JB (1981) The importance of edge in the structure and dynamics of forest islands. In: Burguess RL, Sharpe DM (eds) Forest island dynamics in man-dominated landscapes. Springer, New York, pp 67–95 Robinson GR, Holt RD, Gaines MS, Hamburg SP, Johnson ML, Fitch HS, Martinko EA (1992) Diverse and contrasting effects of habitat fragmentation. Science 257:524–526 Rosseel Y, Jorgensen TD, Oberski D, Byrnes J, Vanbrabant L, Savalei V, Merkle E, Hallquist M, Rhemtulla M, Katsikatsou M, Barendse M, Scharf F (2018) lavaan: latent variable analysis. R package version 0.6-1 Running SW, Mu Q, Zhao M, Moreno A (2017) User’s Guide - MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) NASA Earth Observing System MODIS Land Algorithm. MODIS Land Team, Version 1.5, Collection 6. NASA EOSDIS Land Processes DAAC, 35 p Saunders SC, Chen J, Drummer TD, Crow TR (1999) Modeling temperature gradients across edges over time in a managed landscape. For Ecol Manage 117:17–31 Schultz NM, Lawrence PJ, Lee X (2017) Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J Geophys Res-Biogeosci 122:903–917 Seyler F, Muller F, Cochonneau G, Guimarães L, Guyot JL (2009) Watershed delineation for the Amazon sub-basin system using GTOPO30 DEM and a drainage network extracted from JERS SAR images. Hydrol Process 23:3173–3185 Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302 Tropek R, Sedlácek O, Beck J, Keil P, Musilová Z, Šímová I, Storch D (2014) Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344:981 Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374 Turner MG, Gardner RG, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York Wallenius T, Niskanen L, Virtanen T, Hottola J, Brumelis G, Angervuori A, Julkunen J, Pihlström M (2010) Loss of habitats, naturalness and species diversity in Eurasian forest landscapes. Ecol Indic 10:1093–1101 Wan Z (2008) New refinements and validation of the MODIS land-surface. Remote Sens Environ 112:59–74 West PC, Narisma GT, Barford CC, Kucharik CJ, Foley JA (2010) An alternative approach for quantifying climate regulation by ecosystems. Front Ecol Environ 9:126–133 Wickham H (2017a) reshape: flexibly reshape data. R package version 0.8.7 Wickham H (2017b) scales: scale functions for visualization. R package version 0.5.0 Williams JJ, Newbold T (2020) Local climatic changes affect biodiversity responses to land use: a review. Divers Distrib 26:76–92 Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373 Wilson MC, Chen X, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS, Wu J, Yu M (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227 Yan M, Zhong Z, Liu J (2007) Habitat fragmentation impacts on biodiversity of evergreen broadleaved forests in Jinyun Mountains, China. Front Biol China 2:62–68 Young A, Mitchell N (1994) Microclimate and vegetation edge effects in fragmented podocarp-broadleaf forest in New Zealand. Biol Conserv 67:63–72 Zhan X, Kustas WP, Humes KS (1996) An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature. Remote Sens Environ 58:242–256 Zhao K, Jackson RB (2014) Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol Monogr 84:329–353 Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. In: Gail RM, Krickeberg K, Samat JM, Tsiatis A, Wong W (eds) Statistics for biology and health. Springer, New York, pp 938–939