Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer?

Prostate - Tập 67 Số 3 - Trang 312-329 - 2007
Simon A. Williams1, Pratap Singh2, John T. Isaacs2,1, Samuel R. Denmeade2,1
1The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
2The Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland

Tóm tắt

Abstract

Prostate cancer cells, like normal prostate epithelial cells, produce high levels of the differentiation marker and serine protease prostate‐specific antigen (PSA). PSA is used extensively as a biomarker to screen for prostate cancer, to detect recurrence following local therapies, and to follow response to systemic therapies for metastatic disease. While much is known about PSA's role as a biomarker, only a relatively few studies address the role played by PSA in the pathobiology of prostate cancer. Autopsy studies have documented that not only do prostate cancer cells maintain production of high amounts of PSA but they also maintain the enzymatic machinery required to process PSA to an enzymatically active form. A variety studies performed over the last 10 years have hinted at a role for PSA in growth, progression, and metastases of prostate cancer. A fuller understanding of PSA's functional role in prostate cancer biology, however, has been hampered by the lack of appropriate models and tools. Therefore, the purpose of this review is not to address issues related to PSA as a biomarker. Instead, by reviewing what is known about the genetics, biochemistry, and biology of PSA in normal and malignant prostate tissue, insights may be gained into the role PSA may be playing in the pathobiology of prostate cancer that can connect measurement of this biomarker to an understanding of the underlying etiology and progression of the disease. Prostate 67:312–329, 2007. © 2006 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

Berges RS, 1995, Implication of the cell kinetic changes during the progression of human prostatic cancer, Clin Cancer Res, 1, 473

Pinski J, 2001, Therapeutic implications of enhanced G0/G1 checkpoint control induced by coculture of prostate cancer cells with osteoblasts, Cancer Res, 61, 6372

Bostwick DG, 2000, Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999, Arch Pathol Lab Med, 124, 995

10.1056/NEJM198908173210702

10.1016/S0022-5347(05)67436-8

10.1038/nm0104-26

10.1073/pnas.83.10.3166

10.1172/JCI112185

Lilja H, 1989, Semenogelin, the predominant protein in human semen, J Biol Chem, 264, 1894, 10.1016/S0021-9258(18)94272-9

10.1056/NEJMoa030660

10.1056/NEJMoa031918

10.1016/S0090-4295(01)01304-8

10.1093/carcin/bgg020

10.1016/S0009-9120(03)00055-9

10.1210/er.22.2.184

10.1111/j.1432-1033.1990.tb19466.x

10.1002/1097-0045(20001001)45:2<132::AID-PROS7>3.0.CO;2-3

Denmeade SR, 1997, Specific and efficient peptide substrates for assaying the proteolytic activity of prostate specific antigen, Cancer Res, 57, 4924

10.1210/jc.75.4.1046

10.1016/S0090-4295(96)00182-3

10.1016/S0022-5347(01)65919-6

10.1002/jcp.20147

Lilja H, 2000, Comprehensive Textbook of Genitourinary Oncology, 638

Evans BA, 1987, Mouse glandular kallikrein genes. Structure and partial sequence analysis of the kallikrein gene locus, J Biol Chem, 262, 8027, 10.1016/S0021-9258(18)47521-7

10.1016/S0006-291X(02)02629-3

10.1074/jbc.271.23.13684

10.1006/geno.1994.1402

10.1016/j.gene.2004.09.020

10.1111/j.1349-7006.2001.tb01173.x

10.1016/0014-5793(87)80078-9

10.1089/dna.1991.10.49

Karr JF, 1995, The presence of prostate‐specific antigen‐related genes in primates and the expression of recombinant human specific antigen in a transfected murine cell line, Cancer Res, 55, 2455

10.1016/0167-4781(93)90118-W

Denmeade SR, 1998, Enzymatic‐activation of a doxorubicin‐peptide prodrug by prostate‐specific antigen, Cancer Res, 58, 2537

10.1093/jnci/95.13.990

10.1074/jbc.272.34.21582

10.1006/bbrc.1997.7333

Kumar A, 1997, Expression of pro form of prostate‐specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2, Cancer Res, 57, 3111

Herrala A, 1998, Androgen‐sensitive human prostate cancer cells, LNCaP, produce both N‐terminally mature and truncated prostate‐specific antigen isoforms, Eur J Biochem, 98, 32

10.1016/S0090-4295(01)01605-3

10.1002/pros.1075

10.1002/1097-0045(20000801)44:3<248::AID-PROS10>3.0.CO;2-D

10.1002/pros.1088

10.1021/bi015775e

10.1021/bi002129r

10.1002/pros.10213

10.1093/jnci/91.19.1635

10.1002/pros.10256

Lilja H, 1991, Prostate‐specific antigen in serum occurs predominantly in complex with α1‐antichymotrypsin, Clin Chem, 37, 1618, 10.1093/clinchem/37.9.1618

Stenman UH, 1991, A complex between prostate specific antigen and α1‐antichymotrypsin is the major form of prostate‐specific antigen in serum of patients with prostatic cancer: Assay of the complex improves clinical sensitivity for cancer, Cancer Res, 51, 222

10.1111/j.1464-410X.2003.04634.x

Pettersson K, 1995, Free and complexed prostate‐specific antigen (PSA): In vitro stability, epitope map, and development of immunofluorometric assays for specific and sensitive detection of free PSA and PSA‐alpha 1‐antichymotrypsin complex, Clin Chem, 41, 1480, 10.1093/clinchem/41.10.1480

10.1001/jama.279.19.1542

10.1016/S0022-5347(01)64085-0

10.1016/S0022-5347(01)65586-1

10.1002/pros.20183

10.1002/(SICI)1097-0045(199605)28:5<311::AID-PROS7>3.0.CO;2-E

10.1002/(SICI)1097-0045(19980901)36:4<219::AID-PROS2>3.0.CO;2-A

Koo PH, 1994, Monoamine‐activated alpha 2‐macroglobulin binds trk receptor and inhibits nerve growth factor‐stimulated trk phosphorylation and signal transduction, J Biol Chem, 269, 5369, 10.1016/S0021-9258(17)37696-2

10.1074/jbc.M206174200

10.1002/jcb.20233

10.1016/S0898-6568(01)00202-9

10.1074/jbc.M109764200

10.1074/jbc.M414467200

10.1089/107999000312522

10.1074/jbc.275.8.5826

10.1016/0165-2478(92)90198-W

Bhattacharjee G, 2000, The conformation‐dependent interaction of alpha 2‐macroglobulin with vascular endothelial growth factor. A novel mechanism of alpha 2‐macroglobulin/growth factor binding, J Biol Chem, 275, 26806, 10.1016/S0021-9258(19)61447-X

10.1016/0009-8981(81)90335-1

10.1002/pros.2990040405

10.1001/jama.291.13.1578

10.1016/S0002-9440(10)65517-4

Sakr WA, 1994, High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: An autopsy study of 249 cases, In Vivo, 8, 439

Miller GJ, 2000, Advanced Therapy of Prostate disease, 18

10.1016/S0090-4295(99)80158-7

10.1056/NEJMra021562

10.1016/S0022-5347(05)00892-X

10.1126/science.279.5350.563

10.1093/jnci/90.12.911

10.1023/A:1010819716023

10.1016/S0002-9440(10)63452-9

10.1093/carcin/22.11.1775

de Lamirande E, 2001, Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process, J Androl, 22, 672, 10.1002/j.1939-4640.2001.tb02228.x

Jonsson M, 2005, Semenogelins I and II bind zinc and regulate the activity of prostate‐specific antigen, Biochem J, 387, 447, 10.1042/BJ20041424

Lissbrant IF, 2000, Tumor associated macrophages in human prostate cancer: Relation to clinicopathological variables and survival, Int J Oncol, 17, 445

10.1016/S0022-5347(05)64738-6

10.1097/01.ju.0000091264.46134.b7

10.1002/pros.20414

10.1056/NEJMra030831

10.1097/01.blo.0000093847.72468.2f

10.1158/0008-5472.CAN-04-2442

10.1038/nm0995-944

10.1038/nm0104-26

10.1016/S0046-8177(03)00190-4

Webber MM, 1995, Prostate‐specific antigen, a serine protease, facilitates human prostate cancer cell invasion, Clin Cancer Res, 1, 1089

10.1158/0008-5472.CAN-03-3487

Gygi CM, 2002, Prostate‐specific antigen (PSA)‐mediated proliferation, androgenic regulation and inhibitory effects of LY312340 in HOS‐TE85 (TE85) human osteosarcoma cells, Anticancer Res, 22, 2725

10.1006/bbrc.1993.1506

10.1158/1078-0432.CCR-05-1849

10.1002/pros.20375

10.1210/jc.77.1.229

10.1002/(SICI)1096-9896(199907)188:3<278::AID-PATH358>3.0.CO;2-G

10.1016/S0140-6736(99)04805-9

10.1073/pnas.1830978100

10.1038/sj.bjp.0703830

Chirgwin JM, 2004, Tumor‐bone cellular interactions in skeletal metastases, J Musculoskelet Neuronal Interact, 4, 308

10.1158/1078-0432.CCR-06-0005

10.1093/jnci/djj410

10.1073/pnas.94.12.6369

10.1002/jcb.20339

Shim EH, 2003, Expression of the F‐box protein SKP2 induces hyperplasia, dysplasia, and low‐grade carcinoma in the mouse prostate, Cancer Res, 63, 1583

Yang G, 2002, Elevated Skp2 protein expression in human prostate cancer: Association with loss of the cyclin‐dependent kinase inhibitor p27 and PTEN and with reduced recurrence‐free survival, Clin Cancer Res, 8, 3419

10.1016/S1535-6108(03)00197-1

10.1016/S0960-894X(00)00489-3