Does Firm’s Alliances Increase New Drug Development Time? A Multiple Regression Analysis of Clinical Development Time
Tóm tắt
Alliances between firms are becoming more common for drug development; however, it is not clear how these alliances affect the time spent on drug development. This study analyzes the effect of firm’s alliances on the clinical development time of new drugs by clinical phase. Datasets of the new drug development program in which the Phase 1 trials were started between 2000 and 2015 were constructed using the Evaluate Pharma’s pipeline database. The development time was calculated by measuring the number of days between the initiation dates of a development phase and the date of the subsequent phase, utilizing data from the database. A multiple regression analysis was performed to determine the effect of firm’s alliances on the new drug development time at each stage of development, after controlling for the origin of substances, therapeutic indications, drug designation, and firm size. A firm’s alliances significantly increased the development times of clinical Phases 1, 2, and 3 by 549.3 days, 617.3 days, and 232.0 days, respectively. However, there was no statistically significant effect on the development time of the approval stage. As a firm’s alliances significantly increases the drug development time in the early clinical phases, companies developing new drugs through alliances in the early clinical development stages need to make more efforts to reduce the development time.
Tài liệu tham khảo
EvaluatePharma. FasterCures’ Consortiapedia, Deloitte Analysis. 2016.
DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87:272–7.
Smietana K, Siatkowski M, Møller M. Trends in clinical success rates. Nat Rev Drug Discov. 2016;15(6):379–80.
Getz K, Zuckerman R, DiMasi JA, Kaitin K. Drug development portfolio and spending practices after mergers and acquisitions. Drug Inf J. 2009;43:493–500.
Comanor W, Scherer F. Mergers and innovation in the pharmaceutical industry. J Health Econ. 2013;32:106–13.
Danzon P, Epstein A, Nicholson S. Mergers and acquisitions in the pharmaceutical and biotech industries: managerial and decision economics. 2007;28:307–28.
Keyhani S. Are development times for pharmaceuticals increasing or decreasing? Health Aff. 2006;25(2):461–8.
Li X, Zheng Y, Wang CL. Inter-firm collaboration in new product development in Chinese pharmaceutical companies. Asia Pac J Manag. 2016;33(1):165–93.
Chesbrough HW. Open innovation: the new imperative for creating and profiting from technology. Harvard Business School; Maidenhead: McGraw-Hill, Boston, Mass. 2003.
Su T, Hou W, Levitas E, Wu S. Product complexity and strategic alliance on drug approval. Am Bus Rev. 2021;24(1):36–53.
DiMasi JA, Kim J, Getz KA. The impact of collaborative and risk-sharing innovation approaches on clinical and regulatory cycle times. Ther Innov Regul Sci. 2014;48(4):482–7.
Glass HE, Glass LM, Tran P, Alghamdi H. Pharmaceutical organizational size and phase 3 clinical trial completion times. Ther Innov Regul Sci. 2016;50(6):801–7.
Danzon PM, Nicholson S, Pereira NS. Productivity in pharmaceutical-biotechnology R&D: the role of experience and alliances. J Health Econ. 2005;24(2):317–39.
Kaitin KI, DiMasi JA. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89:183–8.
Rothaermel FT, Deeds DL. Alliance type, alliance experience and alliance management capability in high-technology ventures. J Bus Ventur. 2006;21(4):429–60.
Dutta DK, Hora M. From invention success to commercialization success: technology ventures and the benefits of upstream and downstream supply-chain alliances. J Small Bus Manage. 2017;55(2):216–35.
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016;47:20–33.
Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13(8):577–87.
Brown DG, Wobst HJ. A decade of FDA-approved drugs (2010–2019): Trends and future directions. J Med Chem. 2021;64(5):2312–38.
Aitken M, Kleinrock, M. Lifetime trends in biopharmaceutical innovation: Recent evidence and implications. QuintilesIMS Institute. 2017.
https://www.fda.gov/patients/drug-development-process/step-3-clinical-research. Accessed 18 Dec 2022.
DiMasi JA, Grabowski HG, Vernon J. R&D costs, innovative output and firm size in the pharmaecutical industry. In J Econ Bus. 1995;2:201–19.
DiMasi JA, Faden L. Factors associated with multiple FDA review cycles and approval phase times. Drug Inf J. 2009;43:201–25.