Do Longer Exhalations Increase HRV During Slow-Paced Breathing?

Zachary M. Meehan1, Fred Shaffer2
1Department of Psychological and Brain Sciences, University of Delaware, Newark, USA
2Center for Applied Psychophysiology, Truman State University, Kirksville, USA

Tóm tắt

Slow-paced breathing at an individual’s resonance frequency (RF) is a common element of heart rate variability (HRV) biofeedback training (Laborde et al. in Psychophysiology 59:e13952, 2022). Although there is strong empirical support for teaching clients to slow their respiration rate (RR) to the adult RF range between 4.5 and 6.5 bpm (Lehrer & Gevirtz, 2014), there have been no definitive findings regarding the best inhalation-to-exhalation (IE) ratio to increase HRV when breathing within this range. Three methodological challenges have frustrated previous studies: ensuring participants breathed at the target RR, IE ratio, and the same RR during each IE ratio. The reviewed studies disagreed regarding the effect of IE ratios. Three studies found no IE ratio effect (Cappo & Holmes in J Psychosom Res 28:265-273, 1984; Edmonds et al. in Biofeedback 37:141-146, 2009; Klintworth et al. in Physiol Meas 33:1717-1731, 2012). One reported an advantage for equal inhalations and exhalations (Lin et al. in Int J Psychophysiol 91:206?211, 2014). Four studies observed an advantage for longer exhalations than inhalations (Bae et al. in Psychophysiology 58:e13905, 2021; Laborde et al. in Sustainability 13:7775, 2021; Strauss-Blasche et al. in Clin Exp Pharmacol Physiol 27:601?60, 2000; Van Diest et al. in Appl Psychophysiol Biofeedback 39:171?180, 2014). One study reported an advantage for longer inhalations than exhalations (Paprika et al. in Acta Physiol Hung 101:273?281, 2014). We conducted original (N = 26) and replication (N = 16) studies to determine whether a 1:2 IE ratio produces different HRV time-domain, frequency-domain, or nonlinear metrics than a 1:1 ratio when breathing at 6 bpm. Our original study found that IE ratio did not affect HRV time- and frequency-domain metrics. The replication study confirmed these results and found no effect on HRV nonlinear measurements.

Từ khóa


Tài liệu tham khảo

Bae, D., Matthews, J. J. L., Chen, J. J., & Mah, L. (2021). Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults. Psychophysiology, 58, e13905. https://doi.org/10.1111/psyp.13905. Bezeau, S., & Graves, R. (2001). Statistical power and effect sizes of clinical neuropsychology research. Journal of Clinical and Experimental Neuropsychology, 23, 399–406. https://doi.org/10.1076/jcen.23.3.399.1181. Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8, 3–62. Cappo, B. M., & Holmes, D. S. (1984). The utility of prolonged respiratory exhalation for reducing physiological and psychological arousal in non-threatening and threatening situations. Journal of Psychosomatic Research, 28, 265–273. https://doi.org/10.1016/0022-3999(84)90048-5. Edmonds, W., Kennedy, T., Hughes, P., & Calzada, P. (2009). A single-participants investigation of the effects of various biofeedback-assisted breathing patterns on heart rate variability: A practitioner’s approach. Biofeedback, 37, 141–146. https://doi.org/10.5298/1081-5937-37.4.141. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146 Fisher, L. R., & Lehrer, P. M. (2022). A method for more accurate determination of resonance frequency of the cardiovascular system, and evaluation of a program to perform. Applied Psychophysiology and Biofeedback, 47, 17–26. https://doi.org/10.1007/s10484-021-09524-0. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature, 466, 29–29. https://doi.org/10.1038/466029a. Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., & Sterne, J. A. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj, 343, https://doi.org/10.1136/bmj.d5928. Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2, e124. https://doi.org/10.1371/journal.pmed.0020124. Jarczok, M. N., Koenig, J., & Thayer, J. F. (2021). Lower values of a novel index of vagal- neuroimmunomodulation are associated to higher all-cause mortality in two large general population samples with 18-year follow up. Scientific Reports, 11, 2554. https://doi.org/10.1038/s41598-021-82168-6. Kazdin, A. E. (2016). Research design in clinical psychology (5th ed.). Cambridge University Press. Kepes, S., Banks, G., & Oh, I. (2014). Avoiding bias in publication bias research: The value of null findings. Journal of Business and Psychology, 29, 183–203. https://doi.org/10.1007/s10869-012-9279-0. Klintworth, A., Ajtay, Z., Paljunite, A., Szabados, S., & Hejjel, L. (2012). Heart rate asymmetry follows the inspiration/expiration ratio in healthy volunteers. Physiological Measurement, 33, 1717–1731. https://doi.org/10.1088/0967-3334/33/10/1717. Laborde, S., Iskra, M., Zammit, N., Borges, U., You, M., Sevoz-Couche, C., & Dosseville, F. (2021). Slow-paced breathing: Influence of inhalation/exhalation ratio and of respiratory pauses on cardiac vagal activity. Sustainability, 13, 7775. https://doi.org/10.3390/su13147775. Laborde, S., Allen, M. S., Borges, U., Iskra, M., Zammit, N., You, M., Hosang, T., Mosley, E., & Dosseville, F. (2022). Psychophysiological effects of slow-paced breathing at six cycles per minute with or without heart rate variability biofeedback. Psychophysiology, 59, e13952. https://doi.org/10.1111/psyp.13952. Lehrer, P. (2022). My life in HRV biofeedback research. Applied Psychophysiology and Biofeedback, 47, 1–10. https://doi.org/10.1007/s10484-022-09535-5. Lehrer, P., & Eddie, D. (2013). Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Applied Psychophysiology and Biofeedback, 38, 143–155. https://doi.org/10.1007/s10484-013-9217-6. Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, https://doi.org/10.3389/fpsyg.2014.00756. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25, 177–191. https://doi.org/10.1023/A:1009554825745. Lin, I. M., Tai, L. Y., & Fan, S. Y. (2014). Breathing at a rate of 5.5 breaths per minute with equal inhalation-to-exhalation ratio increases heart rate variability. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 91, 206–211. https://doi.org/10.1016/j.ijpsycho.2013.12.006. Paprika, D., Gingl, Z., Rudas, L., & Zöllei, E. (2014). Hemodynamic effects of slow breathing: Does the pattern matter beyond the rate? Acta Physiologica Hungarica, 101, 273–281. https://doi.org/10.1556/APhysiol.101.2014.3.2. Shaffer, F., & Meehan, Z. M. (2020). A practical guide to resonance frequency assessment for heart rate variability biofeedback. Frontiers in Neuroscience, 14, https://doi.org/10.3389/fnins.2020.570400. Strauss-Blasche, G., Moser, M., Voica, M., McLeod, D. R., Klammer, N., & Marktl, W. (2000). Relative timing of inspiration and expiration affects respiratory sinus arrhythmia. Clinical and Experimental Pharmacology & Physiology, 27, 601–606. https://doi.org/10.1046/j.1440-1681.2000.03306.x. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. PMID: 8598068. Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131–160). Van de Vooren, H., Gademan, M. G., Swenne, C. A., TenVoorde, B. J., Schalij, M. J., & Van der Wall, E. E. (2007). Baroreflex sensitivity, blood pressure buffering, and resonance: What are the links? Computer simulation of healthy subjects and heart failure patients. Journal of Applied Physiology, 102, 1348–1356. https://doi.org/10.1152/japplphysiol.00158.2006. Van Diest, I., Verstappen, K., Aubert, A. E., Widjaja, D., Vansteenwegen, D., & Vlemincx, E. (2014). Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Applied Psychophysiology and Biofeedback, 39, 171–180. https://doi.org/10.1007/s10484-014-9253-x. Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27, 1–27. https://doi.org/10.1023/A:1014587304314. Vaschillo, E. G., Vaschillo, B., & Lehrer, P. M. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Applied Psychophysiology and Biofeedback, 31, 129–142. https://doi.org/10.1007/s10484-006-9009-3. Vaschillo, E. G., Vaschillo, B., Pandina, R. J., & Bates, M. E. (2011). Resonances in the cardiovascular system caused by rhythmical muscle tension. Psychophysiology, 48, 927–936. https://doi.org/10.1111/j.1469-8986.2010.01156.x.