Divertor Thomson Scattering on Globus-M2
Tóm tắt
We present the first Thomson scattering (TS) measurements of electron temperature in the lower divertor of the Globus-M2 tokamak. The divertor TS diagnostics is designed for local measurements of the Te(z, t) in the range of 1–100 eV and ne(z, t) in the range of
$$\sim {\kern 1pt} {{10}^{{17}}}{-} {{10}^{{20}}}$$
m–3. Parameters of the probing Nd:YAG laser are as follows 1064 nm/2 J/100 Hz/3 ns. The probing chord is launched vertically at R = 24 cm and covers areas of the inner leg, vicinity of separatrix and private flux region. Along probing chord of 110 mm, 9 spatial points were realized. Advanced filter polychromators were used to analyze Thomson scattering spectra.
Tài liệu tham khảo
N. N. Bakharev, I. M. Balachenkov, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. V. D’yachenko, M. V. Il’yasova, E. O. Kiselev, A. N. Konovalov, G. S. Kurskiev, A. D. Mel’nik, V. B. Minaev, I. V. Miroshnikov, A. N. Novokhatskii, M. I. Patrov, et al., Plasma Phys. Rep 46, 675 (2020). https://doi.org/10.1134/S1063780X20070016
P. S. Stangeby, Nucl. Fusion 33, 1695 (1993). https://doi.org/10.1088/0029-5515/33/11/I10
B. Kurzan, A. Lohs, G. Sellmair, M. Sochor, and A-SDEX Upgrade team, J. Instrum. 16, C09012 (2021). https://doi.org/10.1088/1748-0221/16/09/C09012
F. Glass, T. N. Carlstrom, D. Du, A. G. McLean, D. A. Taussig, and R. L. Boivin, Rev. Sci. Instrum. 87, 11E508 (2016). https://doi.org/10.1063/1.4955281
J. Hawke, R. Scannell, J. Harrison, R. Huxford, and P. Bohm, J. Instrum. 8, C11010 (2013). https://doi.org/10.1088/1748-0221/8/11/C11010
Yu. V. Petrov, P. A. Bagryansky, I. M. Balachenkov, N. N. Bakharev, P. N. Brunkov, V. I. Varfalomeev, A. V. Voronin, V. K. Gusev, V. A. Goryainov, V. V. Dyachenko, N. V. Ermakov, E. G. Zhilin, N. S. Zhiltsov, S. V. Ivanenko, M. V. Il’yasova, et al., Plasma Phys. Rep. 49, 1459 (2023).
E. E. Mukhin, V. V. Semenov, A. G. Razdobarin, S. Yu. Tolstyakov, M. M. Kochergin, G. S. Kurskiev, A. A. Berezutsky, K. A. Podushnikova, S. V. Masyukevich, P. V. Chernakov, A. I. Borovkov, V. S. Modestov, A. S. Nemov, A. S. Voinov, A. F. Kornev, et al., J. Instrum. 7, C02063 (2012). https://doi.org/10.1088/1748-0221/7/02/C02063
G. Kurskiev, Al. P. Chernakov, V. A. Solovey, S. Yu. Tolstyakov, E. E. Mukhin, A. N. Koval, A. N. Bazhenov, S. E. Aleksandrov, N. S. Zhiltsov, V. A. Senichenkov, A. V. Lukoyanova, P. V. Chernakov, V. I. Varfolomeev, V. K. Gusev, E. O. Kiselev, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 963, 163734 (2020). https://doi.org/10.1016/j.nima.2020.163734
E. Dolgova, V. Vekshina, and V. Rozhansky, Plasma Phys. Controlled Fusion, 2023 (in press).
LabSphere, HELIOS Plus-VM Variable Mamual Systems. https://www.labsphere.com/product/helios-plus-v-family/. Cited July 10, 2023.
LEUKOS, Electro VISIR. https://www.leukos-laser.com/our-products/electro-visir/. Cited July 10, 2023.
C. M. Penney, J. Opt. Soc. Am. 59, 34 (1969).
V. V. Solokha, G. S. Kurskiev, and E. E. Mukhin, S. Yu. Tolstyakov, A. N. Bazhenov, Yu. V. Petrov, V. K. Gusev, N. V. Sakharov, N. A. Babinov, I. M. Bukreev, A. M. Dmitriev, M. M. Kochergin, A. N. Koval, A. E. Litvinov, S. V. Masyukevich, et al., Phys. At. Nucl. 81, 1053 (2018). https://doi.org/10.1134/S1063778818070116
V. I. Vasiliev, Yu. A. Kostsov, K. M. Lobanov, L. P. Makarova, A. B. Mineev, V. K. Gusev, R. G. Levin, Yu. V. Petrov, and N. V. Sakharov, Nucl. Fusion 46, S625 (2006). https://doi.org/10.1088/0029-5515/46/8/S08