Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role

Plant Ecology - Tập 184 - Trang 111-130 - 2006
Petra Hájková1,2, Michal Hájek1,2, Iva Apostolova3
1Department of Botany, Faculty of Science, Masaryk University, Brno, Czech Republic
2Department of Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
3Department of Phytocoenology and Ecology, Institute of Botany, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.

Tài liệu tham khảo

Andrus R.E. (1986). Some aspects of Sphagnum ecology. Canadian Journal of Botany 64: 416–426 Apostolova I. and Slavova L. 1997. Konspekt na rastitelnite s’obšestva v Bulgarii. Compendium of Bulgarian plant communities published during 1891–1995, Sofia Assyov B., Dimitrov D., Vassilev R. and Petrova A. (2002). Conspectus of the Bulgarian vascular flora. Distribution maps and floristic elements. BSBCP, Sofia Boşcaiu N. (1971a). Flora şi vegetaţia munţilor Ţarcu, Godeanu şi Cernei. Editura Academiei Republici Socialiste România, Bucureşti Boşcaiu N. (1971b). Vegetaţia fontinală din munţii Ţarcu, Godeanu şi Cernei. Studii şi Communicari, Sibiu 16: 123–133 Bragazza L. and Gerdol R. (1999a). Ecological gradients on some Sphagnum mires in the southeastern Alps (Italy). Applied Vegetation Science 2: 55–60 Bragazza L. and Gerdol R. (1999b). Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. Plant Ecology 44: 243–256 Bragazza L., Alber R. and Gerdol R. (1998). Seasonal chemistry of pore water in hummocks and hollows in a poor mire in the southern Alps (Italy). Wetlands 18: 320–328 Bragazza L., Rydin H., Gerdol R. (2005). Multiple gradients in mire vegetation - a comparison of a Swedish and an Italian bog. Plant Ecology 177: 223–236 Bruelheide H. 1995. Die Grünlandgesellschaften des Harzes und Standortsbedingungen mit einem Beitrag zum Gliederungspringsprinzip auf der Basis von statistisch ermittelten Artengruppen. Dissertationes Botanicae 244: 1–338 Cheshitev G. and Kanchev I. (eds) 1989. Geological map of Bulgaria, scale 1:500 000 Coldea G. (eds) (1997). Les associations vegetales de Roumanie. Tome I. Les associations herbacees naturalles, Presses Univ., Cluj Coudun Ch. and Gégout J.-C. (2005). Ecological behaviour of herbaceous forest species along a pH gradient: a comparison between oceanic and semicontinental regions in northern France. Global Ecology and Biogeography 14: 263–270 Diekmann M. and Lawesson J.E. (1999). Shifts in ecological behaviour of herbaceous forest species along a transect from northern central to north Europe. Folia Geobotanica 34: 127–141 Dierssen K. 1982. Die wichtigsten Pflanzengesellschaften der Moore NW-Europas. Conserv. Jard. Bot. sér. 6, Ville Geneve Dierssen K. (1996). Vegetation Nordeuropas. E. Ulmer, Stuttgart Dierssen B. and Dierssen K. (1984). Vegetation und Flora der Schwarzwaldmoore. Beihefte zu den Veröffentlichungen für Natuschutz und Landschaftspflege in Baden-Württenberg, Karlsruhe, 39: 1–512 Ganeva A. and Nacheva R. (2003). Check-list of the bryophytes of Bulgaria with data on their distribution. I. Hepaticae and Anthocerotae. Cryptogamie, Bryologie 24: 229–239 Gough L., Shaver G.R., Carroll J., Royer D.L. and Laundre J.A. (2000). Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. Journal of Ecology 88: 54–66 Ewald J. (2003). The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobotanica 38: 357–366 Gerdol R. (1995). Community and species-performance patterns along an alpine poor–rich mire gradient. Journal of Vegetation Science 6: 175–182 Gerdol R. and Tomaselli M. 1997. Vegetation of wetlands in the Dolomites. Dissertationes Botanicae 281: 1–197 Gerdol R. and Bragazza L. (2001). Syntaxonomy and community ecology of mires in the Rhaetian Alps (Italy). Phytocoenologia 29: 271–299 Grabherr G. and Mucina L. (eds) (1993). Die Pflanzengesellschaften Österreich. Teil II. Natürliche waldfreie Vegetation. Gustav Fischer Verlag, Jena Hájek M. (2002). The class Scheuchzerio-Caricetea fuscae in the Western Carpathians: indirect gradient analysis, species groups and their relation to phytosociological classification. Biologia 57: 461–469 Hájek M. and Háberová I. (2001). Scheuchzerio-Caricetea fuscae. In: Valachovié M. (eds) Plant communities of Slovakia. Wetland vegetation. Veda, Bratislava, pp. 185–274 Hájek M. and Hekera P. (2004). Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia 76: 1–14 Hájek M., Hekera P. and Hájková P. (2002). Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37: 205–224 Hájek M., Tzonev R.T., Hájková P., Ganeva A.S. and Apostolova I.I. 2005. Plant communities of subalpine mires and springs in the Vitosha Mt. Phytologia Balcanica, 11: 193–205 Hájková P. and Hájek M. (2003). Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry. Preslia 75: 271–287 Hájková P. and Hájek M. (2004). Bryophyte and vascular plant responses to acidity and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobotanica 39: 335–351 Hájková P., Wolf P. and Hájek M. (2004). Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici 41: 249–262 Hill M.O. (1979). TWINSPAN - a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca Horvat I. (1960). Planinska vegetacija Makedonije u svijetlu suvremenih istraživanja. Acta Musei Macedonici Scientiarum Naturalium 6: 163–203 Horvat I., Glavac V. and Ellenberg H. (1974). Vegetation Sudosteuropas. G. Fischer Verlag, Stuttgart Chytrý M. and Otýpková Z. (2003). Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science 14: 563–570 Chytrý M., Exner A., Hrivnák R., Ujházy K., Valachovié M. and Willner W. (2002). Context-dependence of diagnostic species: A case study of the Central European spruce forests. Folia Geobotanica 37: 403–417 Chytrý M., Tichý L., Holt J. and Botta-Dukát Z. (2002b). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79–90 Chytrý M., Tichý L. and Roleéek J. (2003). Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobotanica 38: 429–442 Knollová I. and Chytrý M. (2004). Oak-hornbeam forests of the Czech Republic: geographical and ecological approaches to vegetation classification. Preslia 76: 291–311 Kuželová I. and Chytrý M. (2004). Interspecific associations in phytosociological data sets: how do they change between local and regional scale? Plant Ecology 173: 247–257 Koéí M., Chytrý M. and Tichý L. (2003). Formalised reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. Journal of Vegetation Science 14: 601–610 Kozhuharov S. (eds) (1992). Field Guide to the Vascular Plants in Bulgaria. Nauka i Izkustvo, Sofia (in Bulgarian) Lepš J. and Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge university press Lieth H., Berlekamp J., Fuest S. and Riediger S. (eds) (1999). Climate Diagram World Atlas. CD-ROM, Backhuys Publishers, Leiden Malmer N. (1986). Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375–383 Marhold K. and Valachovié M. (1998). Coenotic differentiation of the intraspecific taxa of Cardamine amara (Brassicaceae) in Central Europe and the Balkan peninsula. Thaiszia – Journal of Botany 8: 147–161 Meshinev T. and Apostolova I. (1998). Distribution of higher plants biodiversity and the problem of habitat diversity in Bulgaria. Phytologia Balcanica 4: 151–159 Meusel H. (eds) (1978). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten, Band 2. Gustav Fischer Verlag, Jena Meusel H. and Jäger E. (eds) (1992). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten, Band 3. Gustav Fischer Verlag, Jena Molina J.A. (2001). Oligotrophic spring vegetation in Spanish mountain ranges. Folia Geobotanica 36: 281–291 Natcheva R. and Cronberg N. (2003). Genetic diversity in populations of Sphagnum capillifolium from the mountains of Bulgaria, and their possible refugial role. Journal of Bryology 25: 91–99 Natcheva R. and Ganeva A. (2005). Check-list of the bryophytes of Bulgaria with data on their distribution. II. Musci. Cryptogamie, Bryologie 26: 209–232 Nekola J.C. (2004). Vascular plant compositional gradients within and between Iowa fens. Journal of Vegetation Science 15: 771–780 Økland R.H., Økland T. and Rydgren K. (2001). A Scandinavian perspective on ecological gradients in northwest European mires: reply to Wheeler and Proctor. Journal of Ecology 89: 481–486 Perný M., Tribsch A. and Anchev M.E. (2004). Infraspecific differentiation in the Balkan diploid Cardamine acris (Brassicaceae): Molecular and morphological evidence. Folia Geobotanica 39: 405–429 Pärtel M. (2002). Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83: 2361–2366 Roussakova V. (2000). Vegetation alpine et sous alpine superieure de la Montagne de Rila (Bulgarie). Braun-Blanquetia, Camerino 25: 1–132 Rybníéek K. (1985). A Central-European approach to the classification of mire vegetation. Aquilo Ser. Bot. 21: 19–31 Rybníéek K. and Rybníéková E. (1977). Mooruntersuchungen im oberen Gurgltal Ötztaler Alpen. Folia Geobotanica et Phytotaxonomica 12: 245–291 Rybníéek K., Balátová-Tuláéková E. and Neuhäsl R. (1984). Přehled rostlinných spoleéenstev rašeliništ’ a mokřadních luk Československa. Studie ČSAV, Praha 1984/8: 1–123 Schuster B. and Diekmann M. (2003). Changes in species density along the soil pH gradient – Evidence from German plant communities. Folia Geobotanica 38: 367–379 Sieben E.J.J., Boucher C. and Mucina L. (2004). Vegetation of high-altitude fens and restio marshlands of the Hottentots Holland Mountains, Western Cape, South Africa. Bothalia 34: 141–153 Sjörs H. (1952). On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258 Sjörs H. and Gunnarsson U. (2002). Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90: 650–657 Sokal R.R. and Rohlf F.J. (1995). Biometry 3rd edition. W. H. Freeman and Company, New York Sparling J.H. (1966). Studies on the relationships between water movement and water chemistry in mires. Canadian Journal of Botany 44: 747–758 Stehlik I. (2000). Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Botanica Helvetica 110: 25–30 Steiner G.M. (1992). Österreichischer Moorschutzkatalog. Grüne Reihe des BMUJF 1, Wien Tahvanainen T. (2004). Water chemistry of mires in relation to the poor–rich vegetation gradient and contrasting geochemical zones of northeastern Fennoscandian Shield. Folia Geobotanica 39: 353–369 Tahvanainen T. and Tuomala T. (2003). The reliability of mire water pH measurements – a standard sampling protocol and implications to ecological theory. Wetlands 23: 701–708 Tahvanainen T., Sallantaus T., Heikkilä R. and Tolonen K. (2002). Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39: 235–251 ter Braak C.J.F. and Šmilauer P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and Ćeské Budějovice Tichý L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453 Tichý L. (2005). New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecology 179: 67–72 Tonkov S., Panovska H., Possnert G. and Bozilova E. (2002). The Holocene vegetation history of Northern Pirin Mountain, southwestern Bulgaria: pollen analysis and radiocarbon dating of a core from Lake Ribno Banderishko. The Holocene 12: 201–210 Valachovié M. (eds) (2001). Plant communities of Slovakia. 3. Wetland vegetation. Veda, Bratislava van der Maarel E. (1979). Transformation of cover-abundance in phytosociology and its effects on community similarity. Vegetatio 39: 97–114 van der Welle M.E.W., Vermeulen P.J., Shaver G.R., Berendse F. (2003). Factors determining plant species richness in Alaskan arctic tundra. Journal of Vegetation Science 14: 711–720 Vitt D.H. (2000). Peatlands: ecosystems dominated by bryophytes. In: Shaw A.J. and Goffinet B. (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp. 312–343 Vitt D.H., Bayley S.E. and Jin T.L. (1995). Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Canadian Journal of Fisheries and Aquatic Sciences 52: 587–606 Wheeler B.D. and Proctor M.C.F. (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203 Willner W. (2002). Syntaxonomische Revision der suedmitteleuropaeschen Buchenwaelder. Phytocoenologia 32: 337–453 Zechmeister H. and Mucina L. (1994). Vegetation of European springs - high-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science 5: 385–402