Diversity of peptidoglycan structure—Modifications and their physiological role in resistance in antibiotic producers
Tài liệu tham khảo
Arthur, 1993, Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147, J. Bacteriol., 175, 117, 10.1128/jb.175.1.117-127.1993
Arthur, 1991, Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases, Gene, 103, 133, 10.1016/0378-1119(91)90405-Z
Aubry, 2011, OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence, J. Infect. Dis., 204, 731, 10.1093/infdis/jir396
Barka, 2016, Taxonomy, physiology, and natural products of actinobacteria, Microbiol. Mol. Biol. Rev., 80, 1, 10.1128/MMBR.00019-15
Barna, 1984, The structure and mode of action of glycopeptide antibiotics of the vancomycin group, Annu. Rev. Microbiol., 38, 339, 10.1146/annurev.mi.38.100184.002011
Beltrametti, 2007, Resistance to glycopeptide antibiotics in the teicoplanin producer is mediated by van gene homologue expression directing the synthesis of a modified cell wall peptidoglycan, Antimicrob. Agents Chemother., 51, 1135, 10.1128/AAC.01071-06
Bera, 2006, The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity, Infect. Immun., 74, 4598, 10.1128/IAI.00301-06
Bernard, 2011, Identification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan, J. Bacteriol., 193, 6323, 10.1128/JB.05060-11
Binda, 2018, Specificity of induction of glycopeptide antibiotic resistance in the producing actinomycetes, Antibiotics (Basel), 7
Breukink, 1999, Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic, Science, 286, 2361, 10.1126/science.286.5448.2361
Brötz, 1998, Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics, Mol. Microbiol., 30, 317, 10.1046/j.1365-2958.1998.01065.x
Bugg, 1991, Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA, Biochemistry, 30, 10408, 10.1021/bi00107a007
Castiglione, 2008, Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens, Chem. Biol., 15, 22, 10.1016/j.chembiol.2007.11.009
Chang, 2017, Peptidoglycan O-acetylation increases in response to vancomycin treatment in vancomycin-resistant Enterococcus faecalis, Sci. Rep., 7, 46500, 10.1038/srep46500
Cho, 2014, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery, Cell, 159, 1300, 10.1016/j.cell.2014.11.017
Cremniter, 2006, Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium, J. Biol. Chem., 281, 32254, 10.1074/jbc.M606920200
Courvalin, 2006, Vancomycin resistance in gram-positive cocci, Clin. Infect. Dis., 42, 25, 10.1086/491711
Dajkovic, 2017, Hydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg2+ in Bacillus subtilis, Mol. Microbiol., 104, 972, 10.1111/mmi.13673
Egan, 2015, Activities and regulation of peptidoglycan synthases, Philos. Trans. R. Soc. London Ser. B, Biol. Sci., 370, 10.1098/rstb.2015.0031
Figueiredo, 2012, Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus, PLoS Pathog., 8, 10.1371/journal.ppat.1002508
Foulston, 2010, Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes, Proc. Natl. Acad. Sci. U. S. A., 107, 13461, 10.1073/pnas.1008285107
Frasch, 2015, Alternative pathway to a glycopeptide resistant cell wall in the balhimycin producer Amycolatopsis balhimycina, ACS Infect. Dis., 1, 243, 10.1021/acsinfecdis.5b00011
Garg, 2014, Mode of action and structure-activity relationship studies of geobacillin I, J. Antibiot. (Tokyo)., 67, 133, 10.1038/ja.2013.112
Goffin, 1998, Microbiol. Mol. Biol. Rev., 62, 1079, 10.1128/MMBR.62.4.1079-1093.1998
Jabés, 2011, Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens, Antimicrob. Agents Chemother., 55, 1671, 10.1128/AAC.01288-10
Jiang, 2017, Dissemination of antibiotic resistance genes from antibiotic producers to pathogens, Nat. Commun., 8, 15784, 10.1038/ncomms15784
Kilian, 2016, The VanRS homologous two-component System VnlRSAb of the glycopeptide producer Amycolatopsis balhimycina activates transcription of the vanHAXSc genes in Streptomyces coelicolor, but not in A. balhimycina, Microb. Drug Resist., 22, 499, 10.1089/mdr.2016.0128
Leclercq, 1988, Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium, N. Engl. J. Med., 319, 157, 10.1056/NEJM198807213190307
Leisico, 2018, First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD, Sci. Rep., 8, 5313, 10.1038/s41598-018-22986-3
Levefaudes, 2015, Diaminopimelic acid amidation in Corynebacteriales: New insights into the role of LtsA in peptidoglycan mosification, J. Biol. Chem., 290, 13079, 10.1074/jbc.M115.642843
Liu, 2016, The membrane steps of bacterial cell wall synthesis as antibiotic targets, Antibiotics, 5, 28, 10.3390/antibiotics5030028
Lovering, 2012, Structural perspective of peptidoglycan biosynthesis and assembly, Annu. Rev. Biochem., 81, 451, 10.1146/annurev-biochem-061809-112742
Maffioli, 2016, Advancing cell wall inhibitors towards clinical applications, J. Ind. Microbiol. Biotechnol., 43, 177, 10.1007/s10295-015-1703-9
Magnet, 2008, Identification of the l,d-transpeptidases for peptidoglycan cross-linking in Escherichia coli, J. Bacteriol., 190, 4782, 10.1128/JB.00025-08
Mainardi, 2000, Novel mechanism of beta-lactam resistance due to bypass of d,d-transpeptidation in Enterococcus faecium, J. Biol. Chem., 275, 16490, 10.1074/jbc.M909877199
Marcone, 2014, Relationship between glycopeptide production and resistance in the actinomycete Nonomuraea sp. ATCC 39727, Antimicrob. Agents Chemother., 58, 5191, 10.1128/AAC.02626-14
Marcone, 2010, Novel mechanism of glycopeptide resistance in the A40926 producer Nonomuraea sp. ATCC 39727, Antimicrob. Agents Chemother., 54, 2465, 10.1128/AAC.00106-10
Marshall, 1998, Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms, Antimicrob. Agents Chemother., 42, 2215, 10.1128/AAC.42.9.2215
Marshall, 1997, The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both d-alanyl-d-alanine and d-alanyl-d-lactate ligases, FEMS Microbiol. Lett., 157, 295, 10.1016/S0378-1097(97)00449-7
Marshall, 1998, DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with d-alanyl-d-lactate ligase activity, J. Bacteriol., 180, 5792, 10.1128/JB.180.21.5792-5795.1998
McGuinness, 2017, Vancomycin resistance in Staphylococcus aureus, Yale J. Biol. Med., 90, 269
Meeske, 2015, MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis, Proc. Natl. Acad. Sci., 112, 6437, 10.1073/pnas.1504967112
Münch, 2014, The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions, J. Biol. Chem., 289, 12063, 10.1074/jbc.M113.537449
Münch, 2012, Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus, PLoS Pathog., 8, 10.1371/journal.ppat.1002509
Ngadjeua, 2018, Critical impact of peptidoglycan precursor amidation on the activity of l,d-transpeptidases from Enterococcus faecium and Mycobacterium tuberculosis, Chem., 24, 5743, 10.1002/chem.201706082
Nöldeke, 2018, Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus, Sci. Rep., 8, 12953, 10.1038/s41598-018-31098-x
Ogawara, 2016, Self-resistance in Streptomyces, with special reference to β-lactam antibiotics, Molecules, 21, 605, 10.3390/molecules21050605
Ongey, 2017, Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies, Biotechnol. Lett., 39, 473, 10.1007/s10529-016-2279-9
Otto, 1998, Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tü3298, FEMS Microbiol. Lett., 166, 203
Périchon, 2009, VanA-type vancomycin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 53, 4580, 10.1128/AAC.00346-09
Peterson, 2018, Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens, Front. Microbiol., 9, 2928, 10.3389/fmicb.2018.02928
Pozzi, 2016, Distinct mechanisms contribute to self-resistance in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024, Environ. Microbiol., 10.1111/1462-2920.12892
Raymond, 2005, Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan, J. Biol. Chem., 280, 326, 10.1074/jbc.M411006200
Reynolds, 1989, Structure, biochemistry and mechanism of action of glycopeptide antibiotics, Eur. J. Clin. Microbiol. Infect. Dis., 8, 943, 10.1007/BF01967563
Rodríguez-Díaz, 2012, Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei, Bioengineered
Sacco, 2014, Serine/threonine protein phosphatase-mediated control of the peptidoglycan cross-linking l,d-transpeptidase pathway in Enterococcus faecium, MBio, 8
Sacco, 2010, Activation of the l,d-transpeptidation peptidoglycan cross-linking pathway by a metallo-d,d-carboxypeptidase in Enterococcus faecium, Mol. Microbiol., 75, 874, 10.1111/j.1365-2958.2009.07014.x
Schäberle, 2011, Self-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina, Antimicrob. Agents Chemother., 55, 4283, 10.1128/AAC.01372-10
Sham, 2014, MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis, Science, 345, 220, 10.1126/science.1254522
Stegmann, 2015, Self-resistance mechanisms of actinomycetes producing lipid II-targeting antibiotics, Int. J. Med. Microbiol., 305, 190, 10.1016/j.ijmm.2014.12.015
Sosio, 2004, Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus, Microbiol, 150, 95, 10.1099/mic.0.26507-0
Spohn, 2014, Overproduction of ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17, Antimicrob. Agents Chemother., 58, 6185, 10.1128/AAC.03512-14
Stein, 2005, Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099, J. Bacteriol., 187, 822, 10.1128/JB.187.3.822-828.2005
Stein, 2003, Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis, J. Biol. Chem., 278, 89, 10.1074/jbc.M207237200
Thaker, 2013, Identifying producers of antibacterial compounds by screening for antibiotic resistance, Nat. Biotechnol., 31, 922, 10.1038/nbt.2685
van Heijenoort, 2001, Formation of the glycan chains in the synthesis of bacterial peptidoglycan, Glycobiology, 11, 25R, 10.1093/glycob/11.3.25R
Vogelmann, 2011, Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE, EMBO J., 30, 2246, 10.1038/emboj.2011.121
Wiedemann, 2001, Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity, J. Biol. Chem., 276, 1772, 10.1074/jbc.M006770200
Wu, 1995, Overexpression, purification, and characterization of VanX, a d,d-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147, Biochemistry, 34, 2455, 10.1021/bi00008a008
Zheng, 2018, Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli, Proc. Natl. Acad. Sci., 115, 6709, 10.1073/pnas.1802192115
Zhu, 2010, Dissemination of an Enterococcus Inc18-like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 54, 4314, 10.1128/AAC.00185-10