Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: Tribe Paniceae

Springer Science and Business Media LLC - Tập 270 - Trang 1-23 - 2007
A. G. Fahmy1
1Department of Botany, Faculty of Science, University of Helwan, Ain Helwan - Cairo, Egypt

Tóm tắt

Phytoliths are microscopic amorphous silicon dioxide (SiO2.H2O) particles occurring in leaves, internodes, glumes and inflorescence within all members of the grass family Poaceae. Phytoliths of grasses are of particular interest, as they possess morphological features which have encouraged many investigators to identify these plants from which fossil phytoliths might have originated. The present study is a step towards preparing a systematic inventory of grass phytoliths in western tropical Africa. Morphology and dimensions of phytoliths from 66 species belonging to the tribe Paniceae have been studied. Four shape categories of lobate phytoliths have been determined in leaf blade spodograms: bilobate, nodular bilobate, polylobate, quadra-lobate. Bilobate shaped phytoliths are frequently represented in all genera of Paniceae. 13 groups of lobate phytoliths have been distinguished based on significant morphological criteria like shape of outer margins, shape of the shank and number of lobes. A size category system of lobate phytolith dimensions (length, width; length and width of shanks) has been developed by the analysis of average, minimum and maximum values of these dimensions. Application of the size category system results on classifying the major groups into 25 subgroups. The study proves that size and shape can be used to assign some of the lobate phytoliths to their respective genera. Some rarely produced lobate shapes like nodular bilobate and polylobate types could be used together on assemblage basis as markers for definite genera in the tribe Paniceae, e.g. Brachiaria, Panicum, Pennisetum and Setaria. Also, bilobate phytoliths with concave margins have been recorded in five species. Bilobate phytoliths with flattened and convex margins and quadra-lobate shapes are produced by almost all species which therefore resulted in an inconsistent and indefinite relationship with the taxa that produce them. The study shows a correlation between width dimensions of bilobate shapes and their shanks. Greater width dimensions usually connected to thick shanks while short ones are attached to thin shanks. A spectrum on percentages of species producing each type of lobate phytolith has been designed. It is recommended that such spectrum should be carried out for all tribes of Poaceae on phyto-geographical basis which might eliminate the effect of redundancy and multiplicity on the classification of grass phytoliths.

Tài liệu tham khảo

Baker G (1959) Fossil opal-phytoliths and phytolith nomenclature. Austral J Sci 21: 305–306 Bozarth SR, Guderjan TH (2004) Biosilicate analysis of residue in Maya dediacatory cache vessels from blue creek, Belize. J Archaol Sci 31: 205–215 Brown DA (1984) Prospects and limits of a phytolith key for grasses in the Central United States. J Archaeol Sci 11: 221–243 Fahmy AG, Magnavita C (2006) Phytoliths in a silo: microbotanical evidence from Zilum (Lake Chad Basin), NE Nigeria (c. 500 cal BC). J Biol Sci 6: 824–832 Fearn ML (1998) Phytolith in sediment as indicators of grass pollen source. Rev Palaeobot Palynol 103: 75–81 Gallego L, Distel R (2004) Phytolith assemblages in grasses native to central Argentina. Ann Bot 94: 865–874 Geis JW (1973) Biogenic silica in selected species of deciduous angiosperms. Soil Sci 116: 113–119 Hepper FN (1972) Flora of West Tropical Africa 3 (2). Crown agents for overseas governments and administrations, Millbank, London, p. 574 Houyouan L, Naiqin W, Baozhu L (1997) Recognition of rice phytoliths. In: Pinilla A, Juan-Tressaras J, Machado MJ (eds) The state of the art of phytoliths in soils and plants, Madrid, pp 159–174 Hutchinson J (1926–1934) The families of flowering plants, 2 vols. Oxford University Press Iriarte J (2003) Assessing the feasibility of identifying maize through the analysis of cross-shape size and three-dimensional morphology of phytoliths in the grasslands of southeastern south America. J Archaeol Sci 30: 1085–1094 Iriarte J, Holst I, Marozzi O, Listopad C, Alonso E, Rinderknecht A, Montana J (2004) Evidence of cultivar adoption and emerging complexity during the Mid-Holocene in La Plata Basin, Uruguay. Nature 432: 614–617 Kealhofer L, Penny D (1998) A combined phytoliths and pollen record for fourteen thousand years vegetation change in Northeastern Thailand. Rev Palaeobot Palynol 103: 83–93 Krishnan S, Samson NP, Ravichandran P, Narasimhan D, Dayanandan P (2000) Phytoliths of Indian grasses and their potential use in identification. Bot J Linn Soc 132: 241–252 Lu H, Liu K (2003) Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Diver Distrib 9: 73–87 Madella M, Alexandre A, Ball T (2003) International code for phytoliths nomenclature 1.0. Phytolitharien 15: 7–16 Magnavita C, Kahlheber S, Eichhorn B (2004) The rise of organisational complexity in mid-first millenium BC Chad basin. Antiquity 78: 1–17 Mercader J, Runge F, Vrydaghs L, Doutrelepont H, Ewango C, Juan-Tresseras J (2000) Phytoliths from archaeological sites in the Tropical Forest of Ituri, Democratic Republic of Congo. Quat Res 54: 102–112 Metcalfe CR (1960) Anatomy of the Monocotyledons. I. Gramineae. Oxford University Press, London p. 731 Mulholland SC (1989) Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. J Archaeol Sci 16: 489–511 Mulholland SC (1993) A test of phytolith analysis at big Hidatsa, North Dakota. In: Pearsall D, Piperno D (eds) Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA research papers in science and archaeology, vol. 10 MASCA, The University Museum of Archaeology and Anthropology. University of Pennsylvania, Philadelphia, pp. 131–145 Mulholland S, Rapp G, Olledorf AL (1988) Variation in phytoliths from corn leaves. Canad J Bot 66: 2001–2008 Mulholland S, Rapp G (1992) Phytoliths. Systematics, emerging issues. Plenum Press, New York, p. 350 Palmer PG (1976) Grass cuticles: A new palaeoecological for East African lake sediments. Canad J Bot 54: 1725–1734 Palmer PG, Gerbeth JS (1988) A scanning electron microscope survey of the epidermis of East African grasses, V, and West African supplement. Smithsonian Contrib Bot 67: 157 Parr JF, Lentfer CJ, Boyd WE (2001) A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. J Archaeol Sci 28: 875–886 Pearsall D (2000) Palaeoethnobotany - a Handbook of procedures, 2nd edn. Academic Press, New York, p. 695 Pearsall D, Piperno D (1993) Current research in phytoliths analysis: applications in archaeology and palaeoecology. MASCA research papers in science and archaeology, vol 10. MASCA. The University Museum of Archaeology and Anthropology, University of Pennsylvannia, Philadelphia, p 212 Pearsall D, Piperno D, Dinan EH, Umlauf M, Zhao Z, Benfer RA (1995) Distinguishing rice (Oryza sativa, Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 49: 183–96 Pearsall D, Chandler-Ezell K, Chandler-Ezell A (2003) Identifying maize in neotropical sediments and soils using cob phytoliths. J Archaeol Sci 30: 611–627 Pearsall D, Chandler-Ezell K, Chandler Ezell A (2004) Maize can still be identified using phytoliths: response to Rovner. J Archaeol Sci 31: 1029–1038 Piperno DR (1984) A comparison and differentiation of phytoliths from maize and wild grasses: Use of morphological criteria. Amer Antiqity 49: 361–383 Piperno D (1988) Phytoliths analysis: an archaeological and geological perspective. Academic Pess, San Diego, 280 pp Piperno D (1998) Palaeoethnobotany in the Neotropics from microfossils: New insights into ancient plant use and agricultural origins in the tropical forest. J W Prehistory 12: 393–449 Piperno D (2006) Phytoliths: a comprehensive guide for archaeologists and paleogeologists. Altamira Press, New York, p. 238 Piperno D, Starczak V (1985) Numerical analysis of maize and wild grass phytoliths using multivariate techniques. Paper presented at the second phytolith research workshop, Duluth, Minnesota Piperno D, Pearsall D (1993) Phytoliths in the reproductive structures of maize and teosinte: implications for the study of maize evolution. J Archaeol Sci 20: 337–362 Piperno DR, Pearsall D (1998) The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contrib Bot 85: 40 Pipernno D, Holst I, Ranere AJ, Hansell P, Stothert KE (2001) The occurrence of genetically-controlled phytoliths from maize cobs and starch grains from maize kernels on archaeological stone tools and human teeth, and in archaeological sediments from southern central America and northern south America. Phytolitharien 13: 1–7 Rapp G, Mulholland SC (1992) Phytolith systematics: Imerging issues. Plenum Press, New York, p. 350 Rosen AM (1987) Phytoliths studies at Shiqmim. In: Levy TE (ed) ShiqmimI: studies concerning chalcolithic socities in the northern Negev Desert, Israel (1982–1984)., BAR International series 356, Oxford, pp 243–249 Rosen AM (1992) Preliminary identification of silica skeletons from Near Eastern Archaeological sites: an anatomical approach. In: Rapp G, Mulholland SC (eds) Phytolith systematics: emerging issues, Plenum Press, New York, pp. 129–147 Rovner I (1971) Potential of opal phytoliths for use in palaeoecological reconstruction. Quat Res 1: 345–359 Runge F (1995) Potential of opal phytoliths for use in palaeoecological reconstruction in the humid tropics of Africa. Zeit Geomorph N F 99: 53–64 Runge R (1996) Opal phytolithe in Pflanzen aus dem humiden und semi-ariden Osten Afrikas und ihre Bedeutung für die Klima- und Vegetationsgeschichte. Bot Jahrb Syst 118: 303–363 Runge F (1999) The opal phytolith inventory of soils in central Africa- quantities, shapes, classification and spectra. Rev Palaeobot Palynol 107: 23–53 Runge F (2000) Opal-Phytolithe in den Tropen Afrikas und ihre Verwindung bei der Rekonstruktion Paläoökologischer Umweltverhältnisse. Paderborn, Germany, p. 285 Runge F, Runge J (1997) Opal phytoliths in East African plants and soils. Centro de Ciencias Medioambientales (Madrid), Monografias 4: 71–82 Sase T, Hosono M (2001) Phytolith record in soils interstratified with late Quaternary Tephras overlying the eastern region of Towada volcano, Japan. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. Balkema Publisher, Netherlands, pp. 57–71 Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37: 337–350 Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Proceedings of the Soil Science Society of America 33: 109–115 Watson L, Dallwitz MJ (1994) Grass genera of the World. Australian National University Printing Service, Canberra, Australia, p. 1081 Wickens G (1976) The flora of Jebel Marra (Sudan Rep.) and its geographical affinities. London, p 368 Zhao Z, Pearsall RA, Benfer Jr, Piperno D (1998) Distinguishing rice (Oryza sativa, Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 52: 134–45 Zheng Y, Matsui A, Fujiwara H (2003) Phytoliths of rice detected in the Neolithic Sites in the Valley of the Taihu lake in China. Environment Archaeol 8: 177–183