Diversity of interaction solutions to the (2+1)-dimensional Ito equation

Computers & Mathematics with Applications - Tập 75 Số 1 - Trang 289-295 - 2018
Wen‐Xiu Ma1,2,3,4, Xuelin Yong4,5, Hai-Qiang Zhang6,4
1College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
3Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
4Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
5School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
6College of Science, P. O. Box 253, University of Shanghai for Science and Technology, Shanghai 200093, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hirota, 2004

Freeman, 1983, Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique, Phys. Lett. A, 95, 1, 10.1016/0375-9601(83)90764-8

Ma, 2005, Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753, 10.1090/S0002-9947-04-03726-2

Ma, 2009, Wronskian solutions to integrable equations, Discrete Contin. Dyn. Syst. Suppl., 506

Wazwaz, 2017, New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions, Nonlinear Dynam., 87, 2457, 10.1007/s11071-016-3203-5

Manakov, 1977, Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction, Phys. Lett. A, 63, 205, 10.1016/0375-9601(77)90875-1

Satsuma, 1979, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496, 10.1063/1.524208

Ablowitz, 1991

Gilson, 1990, Lump solutions of the BKP equation, Phys. Lett. A, 147, 472, 10.1016/0375-9601(90)90609-R

Ma, 2015, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A, 379, 1975, 10.1016/j.physleta.2015.06.061

Yang, 2016, Lump solutions of the BKP equation by symbolic computation, Internat. J. Modern Phys. B, 30, 1640028, 10.1142/S0217979216400282

Ma, 2016, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dynam., 84, 923, 10.1007/s11071-015-2539-6

Yu, 2017, Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations, Nonlinear Dynam., 87, 1405, 10.1007/s11071-016-3122-5

Zhang, 2017, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73, 246, 10.1016/j.camwa.2016.11.009

Xu, 2014, Rogue wave for the (2+1)-dimensional Kadomtsev–Petviashvili equation, Appl. Math. Lett., 37, 34, 10.1016/j.aml.2014.05.005

Tang, 2016, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl., 72, 2334, 10.1016/j.camwa.2016.08.027

Yang, 2017, Abundant interaction solutions to the KP equation, Nonlinear Dynam., 89, 1539, 10.1007/s11071-017-3533-y

Ito, 1980, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Japan, 49, 771, 10.1143/JPSJ.49.771

Wazwaz, 2008, New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. Math. Comput., 196, 363

Adem, 2016, The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions, Comput. Math. Appl., 71, 1248, 10.1016/j.camwa.2016.02.005

Gilson, 1996, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. Ser. A, 452, 223, 10.1098/rspa.1996.0013

Ma, 2013, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser., 411, 012021, 10.1088/1742-6596/411/1/012021

Dorizzi, 1986, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable?, J. Math. Phys., 27, 2848, 10.1063/1.527260

Konopelchenko, 1991, The AKNS hierarchy as symmetry constraint of the KP hierarchy, Inverse Problems, 7, L17, 10.1088/0266-5611/7/2/002

Ma, 1994, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A, 185, 277, 10.1016/0375-9601(94)90616-5

Li, 2015, Binary Bargmann symmetry constraint associated with 3  × 3 discrete matrix spectral problem, J. Nonlinear Sci. Appl., 8, 496, 10.22436/jnsa.008.05.05

Dong, 2016, The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation, Commun. Nonlinear Sci. Numer. Simul., 36, 354, 10.1016/j.cnsns.2015.12.015

Adem, 2016, A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws, Internat. J. Modern Phys. B, 30, 1640001, 10.1142/S0217979216400014

Yildirim, 2017, A multiple exp-function method for the three model equations of shallow water waves, Nonlinear Dynam., 89, 2291, 10.1007/s11071-017-3588-9

Ma, 2011, Generalized bilinear differential equations, Stud. Nonlinear Sci., 2, 140

Ma, 2013, Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys., 72, 41, 10.1016/S0034-4877(14)60003-3

Ma, 2015, Trilinear equations, Bell polynomials, and resonant solutions, Front. Math. China, 8, 1139, 10.1007/s11464-013-0319-5