Diversity of interaction solutions to the (2+1)-dimensional Ito equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hirota, 2004
Freeman, 1983, Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique, Phys. Lett. A, 95, 1, 10.1016/0375-9601(83)90764-8
Ma, 2005, Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc., 357, 1753, 10.1090/S0002-9947-04-03726-2
Ma, 2009, Wronskian solutions to integrable equations, Discrete Contin. Dyn. Syst. Suppl., 506
Wazwaz, 2017, New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions, Nonlinear Dynam., 87, 2457, 10.1007/s11071-016-3203-5
Manakov, 1977, Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction, Phys. Lett. A, 63, 205, 10.1016/0375-9601(77)90875-1
Satsuma, 1979, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496, 10.1063/1.524208
Ablowitz, 1991
Gilson, 1990, Lump solutions of the BKP equation, Phys. Lett. A, 147, 472, 10.1016/0375-9601(90)90609-R
Ma, 2015, Lump solutions to the Kadomtsev–Petviashvili equation, Phys. Lett. A, 379, 1975, 10.1016/j.physleta.2015.06.061
Yang, 2016, Lump solutions of the BKP equation by symbolic computation, Internat. J. Modern Phys. B, 30, 1640028, 10.1142/S0217979216400282
Ma, 2016, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dynam., 84, 923, 10.1007/s11071-015-2539-6
Yu, 2017, Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations, Nonlinear Dynam., 87, 1405, 10.1007/s11071-016-3122-5
Zhang, 2017, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73, 246, 10.1016/j.camwa.2016.11.009
Xu, 2014, Rogue wave for the (2+1)-dimensional Kadomtsev–Petviashvili equation, Appl. Math. Lett., 37, 34, 10.1016/j.aml.2014.05.005
Tang, 2016, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl., 72, 2334, 10.1016/j.camwa.2016.08.027
Yang, 2017, Abundant interaction solutions to the KP equation, Nonlinear Dynam., 89, 1539, 10.1007/s11071-017-3533-y
Ito, 1980, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders, J. Phys. Soc. Japan, 49, 771, 10.1143/JPSJ.49.771
Wazwaz, 2008, New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. Math. Comput., 196, 363
Adem, 2016, The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions, Comput. Math. Appl., 71, 1248, 10.1016/j.camwa.2016.02.005
Gilson, 1996, On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. Ser. A, 452, 223, 10.1098/rspa.1996.0013
Ma, 2013, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser., 411, 012021, 10.1088/1742-6596/411/1/012021
Dorizzi, 1986, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable?, J. Math. Phys., 27, 2848, 10.1063/1.527260
Konopelchenko, 1991, The AKNS hierarchy as symmetry constraint of the KP hierarchy, Inverse Problems, 7, L17, 10.1088/0266-5611/7/2/002
Ma, 1994, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A, 185, 277, 10.1016/0375-9601(94)90616-5
Li, 2015, Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem, J. Nonlinear Sci. Appl., 8, 496, 10.22436/jnsa.008.05.05
Dong, 2016, The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation, Commun. Nonlinear Sci. Numer. Simul., 36, 354, 10.1016/j.cnsns.2015.12.015
Adem, 2016, A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws, Internat. J. Modern Phys. B, 30, 1640001, 10.1142/S0217979216400014
Yildirim, 2017, A multiple exp-function method for the three model equations of shallow water waves, Nonlinear Dynam., 89, 2291, 10.1007/s11071-017-3588-9
Ma, 2011, Generalized bilinear differential equations, Stud. Nonlinear Sci., 2, 140
Ma, 2013, Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys., 72, 41, 10.1016/S0034-4877(14)60003-3